Innovative Approach to the Optimal Distribution of Citizens’ Pension Savings to Non-State Pension Funds

Evgeniy Kostyrin, Stepan Drynkin

Abstract


In the Russian Federation, persistent economic and legal tensions surround the allocation of citizens’ pension savings; however, individuals retain the option to select the organization that manages the funded portion of their pension. This study aims to address the challenges posed by dynamic programming regarding the optimal distribution of Russian citizens’ pension savings to non-state pension funds (NPFs), using predictive analyses of expected returns generated by the Verhulst forecasting equation. The research methodology encompassed system analysis, the Verhulst prognostic equation, dynamic programming models, and conditional optimization based on R. Bellman’s equations. The study’s information and empirical foundation comprised current regulatory legal acts, data from the Federal State Statistics Service (Rosstat), open data from the Central Bank of the Russian Federation (Bank of Russia), analysis of information sources on the activities of domestic NPFs, results of empirical studies by domestic and foreign authors, and information obtained from open sources on the profitability of 22 NPFs of the Russian Federation. The forecast for the period from 2024 to 2063, using the Verhulst forecasting model developed in this study, indicates that the highest value of expected profitability in 2063, specifically 11.66% in annual terms, should be anticipated from the JSC NPF Alliance, while the minimum (3.54% per annum) is expected from the JSC MNPF BOLSHOY. The solution to the dynamic programming problem concerning the optimal distribution of citizens’ pension savings in NPFs demonstrated that the maximum return on investment of pension funds would be achieved under the condition that from 2024 to 2043, funds are invested in JSC NPF FUTURE, and from 2044 to 2063, the funds are invested in the JSC NPF Alliance. The total return on pension savings for the entire investment period (40 years) amounts to 5202%, or more than 52 times the initial investment.

 

Doi: 10.28991/ESJ-2025-09-01-028

Full Text: PDF


Keywords


Forecasting; Verhulst Equation; Logistic Equation; Profitability; R. Bellman Equation; Conditional Optimization; Funded Pension.

References


Kostyrin, E. V., Drynkin, S. G., & Saakyan, O. O. (2024). Economic and Legal Foundations of the Management of Pension Savings of Citizens. Bulletin of the Altai Academy of Economics and Law, 3(4), 428–435. doi:10.17513/vaael.3442.

Kostyrin, E., Suo, S., & Drynkin, S. (2024). Demographic burden and average insurance retirement benefit: Scenario approach. E3S Web of Conferences, 535, 2013. doi:10.1051/e3sconf/202453502013.

Kostyrin, E. V., & Drynkin, S. G. (2023). the Economic Effect of the Introduction of Personalized Pension Accounts Into the Pension System of Russian Citizens. Economy and Management: Problems, Solutions, 9/3(139), 129–144. doi:10.36871/ek.up.p.r.2023.09.03.014.

Kostyrin, E. V., & Drynkin, S. G. (2023). Ferhulst Equation As a Demographic Forecasting Tool. Scientific Works of the Free Economic Society of Russia, 240(2), 407–435. doi:10.38197/2072-2060-2023-240-2-407-435.

Bunnag, T. (2023). The Importance of Gold and Forecasting of the Gold Price Using ARIMA, ARIMA-GARCH, and ARIMA-TGARCH Model. Burapha University, Saen Suk, Thailand.

Guo, Z. (2024). Utilizations of the ARIMA Model: Empirical Findings from the Nasdaq Index. Advances in Economics, Management and Political Sciences, 87(1), 133–139. doi:10.54254/2754-1169/87/20240892.

Taslim, D. G., & Murwantara, I. M. (2024). Comparative analysis of ARIMA and LSTM for predicting fluctuating time series data. Bulletin of Electrical Engineering and Informatics, 13(3), 1943–1951. doi:10.11591/eei.v13i3.6034.

Dong, S. (2024). Stock Price Analysis and Forecasting of Bank of China Based on ARIMA Model. Advances in Economics, Management and Political Sciences, 84(1), 133–140. doi:10.54254/2754-1169/84/20240801.

Agyare, S., Odoi, B., & Wiah, E. N. (2024). Predicting Petrol and Diesel Prices in Ghana, A Comparison of ARIMA and SARIMA Models. Asian Journal of Economics, Business and Accounting, 24(5), 594–608. doi:10.9734/ajeba/2024/v24i51333.

Zulfiqar, H., Ahmad, R., & Shahzad, U. (2024). Hybrid ARIMA-IIS Approach for Wheat Yield Forecasting: An Integrated Approach. IRASD Journal of Economics, 6(1), 109–127. doi:10.52131/joe.2024.0601.0197.

Toshaliyeva, S. (2024). Using the Arima model to forecast the share of railways in the industry. E3S Web of Conferences, 531, 2024. doi:10.1051/e3sconf/202453102024.

Tchoketch-Kebir, H., & Madouri, A. (2024). Research Leadership and High Standards in Economic Forecasting: Neural Network Models Compared with Etalon ARIMA Models. Business Ethics and Leadership, 8(1), 220–233. doi:10.61093/bel.8(1).220-233.2024.

Maiga, Y. M. (2024). Empirical Approach to Modelling and Forecasting Inflation using ARIMA Model: Evidence from Tanzania. Journal of Agricultural Studies, 12(2), 58. doi:10.5296/jas.v12i2.21695.

Li, H. (2024). Comparison of ARIMA and LSTM in Different Industries. Advances in Economics, Management and Political Sciences, 57(1), 294–302. doi:10.54254/2754-1169/57/20230772.

Mehtarizadeh, H., Mansouri, N., Mohammad Hasani Zade, B., & Hosseini, M. M. (2025). Stock price prediction with SCA-LSTM network and Statistical model ARIMA-GARCH. The Journal of Supercomputing, 81(2), 366. doi:10.1007/s11227-024-06775-6.

Hassan, A., Paila, N., Bammidi, V., Divvala, A. V., Tejesh, P., Praveen, K., ... & Chary, P.S. (2024). Bitcoin Price Prediction by Using Arima. International Journal of Scientific Research in Engineering and Management, 8(5), 1–5. doi:10.55041/ijsrem32489.

Shabanova, E. Y. (2023). ARIMA-Profile of the Inflation Forecasting in the Tomsk Region Problem. Mezhdunarodnaja Jekonomika (The World Economics), 10(10), 734–743. doi:10.33920/vne-04-2310-07.

Khalil, D. M., Mohammad, M. J., & Hamza, H. A. (2024). Monthly Gold Price Forecasting Using ANN And ARIMA Migration Letters Monthly Gold Price Forecasting Using ANN And ARIMA. Migration Letters, 21(S4), 539–559.

Dutta, D. (2023). ARIMA-Based Forecasting of S&P BSE SENSEX Returns. Management Journal for Advanced Research, 3(6), 1–8. doi:10.54741/mjar.3.6.1.

Xia, C. (2024). Comparative Analysis of ARIMA and LSTM Models for Agricultural Product Price Forecasting. Highlights in Science, Engineering and Technology, 85, 1032–1040. doi:10.54097/8q6nx369.

Poudel, O., Kharel, K. R., Acharya, P., Simkhada, D., & Kafle, S. C. (2024). ARIMA Modeling and Forecasting of National Consumer Price Index in Nepal. Interdisciplinary Journal of Management and Social Sciences, 5(1), 105–118. doi:10.3126/ijmss.v5i1.62666.

Gerasimuk, A. D. (2022). Application of the ARIMA model for oil price forecasting. Self -Governance, 2, 2221-8173.

Arkhipova, A. A. (2023). Forecasting the price dynamics of shares using a model ARIMA-GARCH. Economy and Business: Theory and Practice, 6–1, 14–17.

Otelbaev, M., Durmagambetov, A. A., & Seitkulov, Y. N. (2008). Conditions for existence of a global strong solution to one class of nonlinear evolution equations in Hilbert space. II. Siberian Mathematical Journal, 49(4), 684–691. doi:10.1007/s11202-008-0065-1.

Otelbaev, M., Durmagambetov, A. A., & Seitkulov, E. N. (2006). Existence conditions for a global strong solution to one class of nonlinear evolution equations in a Hilbert space. Doklady Mathematics, 73(3), 391–393. doi:10.1134/S1064562406030203.

Zhao, P., Zhu, H., Wilfred Siu Hung, N. G., & Lee, D. L. (2024). From GARCH to Neural Network for Volatility Forecast. Proceedings of the AAAI Conference on Artificial Intelligence, 38(15), 16998–17006. doi:10.1609/aaai.v38i15.29643.

Kumar, P. (2024). Volatility Prediction of Oil and Gold Prices Using GARCH Model Volatility Prediction of Oil and Gold Prices Using GARCH Model. Indian Journal of Natural Products, 14(82), 70463–70473.

Escobar-Anel, M., Speck, M., & Zagst, R. (2024). Bayesian Learning in an Affine GARCH Model with Application to Portfolio Optimization. Mathematics, 12(11), 1611. doi:10.3390/math12111611.

Kumar, J., Jilowa, A. K., & Deokar, M. (2024). Volatility modeling of cryptocurrency and identifying common GARCH model. Communications in Statistics Case Studies Data Analysis and Applications, 1–18. doi:10.1080/23737484.2024.2351998.

Benaid, B., Al Hasani, I., & Eddahbi, M. (2024). Number of Volatility Regimes in the Muscat Securities Market Index in Oman Using Markov-Switching GARCH Models. Symmetry, 16(5), 569. doi:10.3390/sym16050569.

Simwaka, K., & Mkandawire, L. (2010). Official intervention in Foreign Exchange Market in Malawi: A comparison of GARCH and Equilibrium Exchange Rate approaches. MPRA Paper No. 23111, 1-49.

Dinga, B., Claver, J. H., Cletus, K. K., & Che, S. F. (2023). Modeling and Predicting Exchange Rate Volatility: Application of Symmetric GARCH and Asymmetric EGARCH and GJR-GARCH Models. Journal of the Cameroon Academy of Sciences, 19(2), 155–178. doi:10.4314/jcas.v19i2.6.

Abu Hammad, M., Alkhateeb, R., Laiche, N., Ouannas, A., & Alshorm, S. (2024). Comparative Analysis of Bilinear Time Series Models with Time-Varying and Symmetric GARCH Coefficients: Estimation and Simulation. Symmetry, 16(5), 581. doi:10.3390/sym16050581.

Kumar, V., Bharti, B., Singh, H. P., Singh, A., & Topno, A. R. (2024). Prediction of volatility and seasonality vegetation by using the GARCH and Holt-Winters models. Environmental Monitoring and Assessment, 196(3), 288. doi:10.1007/s10661-024-12437-0.

Escobar-Anel, M., Spies, B., & Zagst, R. (2024). Optimal consumption and investment in general affine GARCH models. OR Spectrum, 46(3), 987–1026. doi:10.1007/s00291-024-00749-z.

Wanja, I., Malenje, B., & Wamwea, C. (2023). Forecasting Stock Prices Volatility with Information (An ANN-GARCH Hybrid Approach). Research Journal of Finance and Accounting, 14(17), 36-40. doi:10.7176/rjfa/14-17-04.

Rizal, M., Putra Haryanto, A. E., & Juliarini, N. K. (2024). Arima-Garch Model in Overcoming Heteroschedsdaticity in Stock Price Prediction (Case Study: Pt Indofood, TBK (INDF)). Jurnal Matematika UNAND, 13(2), 91. doi:10.25077/jmua.13.2.91-105.2024.

Kiranmai, B. N. S. S., & Thangaraj, V. (2023). Modeling Volatility of Cryptocurrencies: GARCH Approach. Third Congress on Intelligent Systems. CIS 2022, Lecture Notes in Networks and Systems, 613, Springer, Singapore. doi:10.1007/978-981-19-9379-4_19.

Yıldırım, H., & Bekun, F. V. (2023). Predicting volatility of bitcoin returns with ARCH, GARCH and EGARCH models. Future Business Journal, 9(1), 75. doi:10.1186/s43093-023-00255-8.

Kirichenko, A. O., Zolkin, A. L., Sverdlikova, E. A., & Zhiltsov, S. A. (2024). Adaptation and application of modern technologies in the analysis of inflationary trends. Journal of Applied Research, 3(3), 50–57. doi:10.47576/2949-1878.2024.3.3.008.

Molchanov, A. A. (2012). Using the GARCH models to study the dynamics of the exchange rate. Gaudeamus, 20.

Changani, J. (2013). Forecasting stock index return using var approach. SAS Analysis 2013 Conference, 21-22 October, 2013, Orlando, United States.

Messaoudi, H., Abbassi, A., & Khraief, N. (2024). Olive Oil World Price Forecasting: A Bayesian VAR Approach. Journal of Agricultural and Food Industrial Organization, 22(1), 41–52. doi:10.1515/jafio-2023-0015.

Dées, S., & Güntner, J. (2016). Forecasting inflation across euro area countries and sectors: A panel VAR approach. Journal of Forecasting, 36(4), 431–453. doi:10.1002/for.2444.

Lu, X., Sheng, K., & Zhang, Z. (2022). Forecasting VaR and ES using the joint regression combined forecasting model in the Chinese stock market. International Journal of Emerging Markets, 19(10), 3393-3417. doi:10.1108/IJOEM-06-2022-0941.

Gautam, R. S., & Kanoujiya, J. (2022). Multivariate Inflation Forecasting: A Case of Vector Auto Regressive (VAR) Model. IConic Research and Engineering Journals, 5(12), 11–14.

Padmakumari, L., & Shaik, M. (2023). An Empirical Investigation of Value at Risk (VaR) Forecasting Based on Range-Based Conditional Volatility Models. Engineering Economics, 34(3), 275–292. doi:10.5755/j01.ee.34.3.30335.

Malov, D. N. (2019). Assessment of the investment attractiveness of companies based on the VAR model (vector autoregression) and ARIMA considering account the risks. Innovations and Investments, 1, 152-159.

Harsh Gupta, Mrs. R Aafrein, Mrs. Rashmi Kumari, Mr. Swapnil Rajput, & Mrs. Nupur Puri. (2024). Forecasting Commodity Prices using Machine Learning. International Journal of Scientific Research in Science and Technology, 81–89. doi:10.32628/ijsrst52411110.

Mironchuk, V. A., Ivantsov, K. A., & Gordeev, E. S. (2024). Forecasting Economic Cycles Using Machine Learning. Progressive Economics, 5(5), 67–84. doi:10.54861/27131211_2024_5_67. (In Russian).

Raza, F. (2023). Machine Learning for Financial Forecasting. Cosmic Bulletin of Business Management, 1(2), 240–257. doi:10.13140/RG.2.2.35701.96483.

Gür, Y. E. (2024). Consumer Price Index Forecasting in Turkey: A Comparison of Deep Learning and Machine Learning Approaches. Iğdır Üniversitesi Sosyal Bilimler Dergisi, 36(36), 312–344. doi:10.54600/igdirsosbilder.1386274.

Evdokimov, С. В. (2024). Agricultural insurance: an analysis of the current state in Russia and its development prospects. Modern Economy Success, 3(3), 129–137. doi:10.58224/2500-3747-2024-3-129-137.

Alizadegan, H., Radmehr, A., & Ilani, M. A. (2024). Forecasting Bitcoin Prices: A Comparative Study of Machine Learning and Deep Learning Algorithms. Research Square, 1-19. doi:10.21203/rs.3.rs-4390390/v1.

Patil, N. R., & Pattanashetti, N. (2024). The Use of Artificial Intelligence and Machine Learning in Forecasting the Financial Growth of Automobile Industries. International Journal of Scientific Research in Engineering and Management, 8(5), 1-4. doi:10.55041/ijsrem34453.

Berger, T., & Koubová, J. (2024). Forecasting Bitcoin returns: Econometric time series analysis vs. machine learning. Journal of Forecasting, 43(7), 2904-2916. doi:10.1002/for.3165.

Rhoda Adura Adeleye, Tula Sunday Tubokirifuruar, Binaebi Gloria Bello, Ndubuisi Leonard Ndubuisi, Onyeka Franca Asuzu, & Oluwaseyi Rita Owolabi. (2024). Machine Learning for Stock Market Forecasting: a Review of Models and Accuracy. Finance & Accounting Research Journal, 6(2), 112–124. doi:10.51594/farj.v6i2.783.

Ravi, R. (2023). Effectiveness of Machine Learning Algorithms in Cryptocurrency Price Forecasting. Phemex, Singapore.

Hoque, K. E., & Aljamaan, H. (2021). Impact of hyperparameter tuning on machine learning models in stock price forecasting. IEEE Access, 9, 163815–163830. doi:10.1109/ACCESS.2021.3134138.

Kong, T. (2023). Machine Learning in Finance: A Case Study on Forecasting Google’s Stock Price. Advances in Economics, Management and Political Sciences, 65(1), 31–35. doi:10.54254/2754-1169/65/20231565.

Wong, A., Figini, J., Raheem, A., Hains, G., Khmelevsky, Y., & Chu, P. C. (2023). Forecasting of Stock Prices Using Machine Learning Models. SysCon 2023 - 17th Annual IEEE International Systems Conference, Proceedings, 29, 1–7. doi:10.1109/SysCon53073.2023.10131091.

Karachun, I., Vinnichek, L., & Tuskov, A. (2021). Machine learning methods in finance. SHS Web of Conferences, 110, 05012. doi:10.1051/shsconf/202111005012.

Kumar Chary, T. D., Kavya, K. V., & Reddy, N. N. (2024). Revolutionizing Stock Price Prediction Using LSTM. International Journal of Innovative Science and Research Technology (IJISRT), 3109–3147. doi:10.38124/ijisrt/ijisrt24apr1602.

Liu, Y. (2024). Stock price prediction for Google based on LSTM model with sentiment analysis. Applied and Computational Engineering, 54(1), 90–97. doi:10.54254/2755-2721/54/20241395.

Raut, S. (2024). Stock Market Price Prediction and Forecasting Using Stacked LSTM. International Journal of Scientific Research in Engineering and Management, 08(03), 1–5. doi:10.55041/ijsrem29832.

Raut, S. (2024). Analysis & Stock Price Prediction and Forecasting Using Different LSTM Models. International Journal of Scientific Research in Engineering and Management, 08(04), 1–5. doi:10.55041/ijsrem30115.

Pang, T. (2024). APPL stock price prediction based on LSTM and GRU. Applied and Computational Engineering, 47(1), 200–206. doi:10.54254/2755-2721/47/20241343.

Diqi, M., & Hamzah, H. (2024). Improving Stock Price Prediction Accuracy with StacBi LSTM. JISKA (Jurnal Informatika Sunan Kalijaga), 9(1), 10–26. doi:10.14421/jiska.2024.9.1.10-26.

Yang, R. (2023). Bitcoin price and return prediction based on LSTM. Theoretical and Natural Science, 26(1), 74–80. doi:10.54254/2753-8818/26/20241021.

Lomakin, N., Maramygin, M., Kuzmina, T., Tudevdagva, U., Kanchana, V., & Lomakin, I. (2023). The Decision Tree Neural Network as Part of a Cognitive Model for Forecasting the Sustainability of the Russian Economy. Sustainable Development and Engineering Economics, 1, 82–94.

Pospelov, K. N., Burlutskaya, Z. V., Gintciak, A. M., & Troshchenko, K. D. (2023). Multiparametric Optimization of Complex System Management Scenarios Based on Simulation Models. International Journal of Technology, 14(8), 1748-1758. doi:10.14716/ijtech.v14i8.6832.

Liang, L., Liu, B., Su, Z., & Cai, X. (2024). Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China. Journal of Forecasting, 43(7), 2540–2571. doi:10.1002/for.3138.

Jaiswal, A. (2024). A Study on Stock Forecasting Using Deep Learning and Statistical Models. Research Square, 1-18. doi:10.21203/rs.3.rs-3918203/v1.

Ghosh, B. P., Bhuiyan, M. S., Das, D., Nguyen, T. N., Jewel, R. M., Mia, M. T., ... & Shahid, R. (2024). Deep Learning in Stock Market Forecasting: Comparative Analysis of Neural Network Architectures Across NSE and NYSE. Journal of Computer Science and Technology Studies, 6(1), 68-75. doi:10.32996/jcsts.2024.6.1.8.

Chowdhury, M. S., Nabi, N., Rana, M. N. U., Shaima, M., Esa, H., Mitra, A., ... & Naznin, R. (2024). Deep Learning Models for Stock Market Forecasting: A Comprehensive Comparative Analysis. Journal of Business and Management Studies, 6(2), 95-99. doi:10.32996/jbms.2024.6.2.9.

Kaigorodova, E. A., & Shchetinin, E. Y. (2023). Information technologies and mathematical methods in economics and management (ITAMM-2023). Collection of articles XII International Scientific and Practical Conference named after A.I. Kitova, Moscow, Russia.

Noviantri, V., Chandra, A. S., & Yusof, Y. (2022). Fit and Forecasting Indonesia Banking Stock Price During Covid-19 Pandemic Based on Logistic Differential Equation System. Proceedings of the 2022 4th International Conference on E-Business and E-Commerce Engineering, 56-63. doi:10.1145/3589860.3589881.

Shehu, V. A. L. E. N. T. I. N. A. (2015). Logistic equation and its application as forecasting model of vegetables production in greenhouses in Albania. Albanian Journal of Agricultural Sciences, 14(3), 228-235.

Kapçiu, R., Preni, B., Kalluçi, E., & Kosova, R. (2024). Modeling Inflation Dynamics Using the Logistic Model: Insights and Findings. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 364–378. doi:10.22437/jiituj.v8i1.32605.

Shtiller, M. V., Appakova, G. N., Selezneva, I. V., Vasiljeva, M. V., & Sisina, N. N. (2017). Procedure for Efficiency Assessment of Financial-Budgetary Control System. Journal of Applied Economic Sciences, 12(8).

Al Mamun, H., Ali, E., Roy, K. C., Karim, R., Uddin, N., & Dey, P. (2023). Analyzing and projection of forecasting population of Bangladesh using exponential model, logistic model, and discrete logistic model. Seybold Reports, 18, 187-202.

Chang, H., Cai, J., Zhang, B., Wei, Z., & Xu, D. (2023). Early Yield Forecasting of Maize by Combining Remote Sensing Images and Field Data with Logistic Models. Remote Sensing, 15(4), 1025. doi:10.3390/rs15041025.

Kostyrin, E. V. (2019). Solution of the Problem on the Funds Distribution From the Medical Organization Development Foundation among Its Departments Through Dynamic Programming Methods. Vector of Science of Tol'yatti State University. Series Economics and Management, 4(4), 27–34. doi:10.18323/2221-5689-2019-4-27-34.

Kremer, N. S. (2024). Operations Research in Economics: Textbook for Universities. Yurait Publishing House, Moscow, Russia.

Central Bank of the Russian Federation, Moscow, Russia. Available online: http://cbr.ru (accessed on January 2025). (In Russian).

Social Fund of Russia, Moscow, Russia. Available online: http://sfr.gov.ru (accessed on January 2025).

Zarudnii, O. B. (2024). Usage of intellectual analysis of ecological-economic data in the pension insurance system and for forecasting expenditures on social protection and social security. Environmental Safety and Natural Resources, 51(3), 161–176. doi:10.32347/2411-4049.2024.3.161-176.

Trusova, N. V. (2023). State Financial Inclusion As a Driver of Modernization of the Pension System of Ukraine. Scientific Papers of Dmytro Motornyi Tavria State Agrotechnological University (Economic Sciences), 102. doi:10.31388/2519-884x-2023-48-95-102.

Horbachova, O., & Kushnirova, K. (2022). Actuarial calculations in the pension insurance system. Digitalization of the Economy as a Factor In The Sustainable Development of the State, 186-190. doi:10.30525/978-9934-26-242-5-46.

Amalia, H. S., Subartini, B., & Sukono, S. (2024). Actuarial Calculation of Pension Funds Using Attained Age Normal (AAN) at PT Taspen Cirebon Branch Office: For Normal Pension. Operations Research: International Conference Series, 5(3), 114–121. doi:10.47194/orics.v5i3.332.

Putrie, V. C., & Nurdyah, H. A. (2024). Use of Constant Type Cost Prorate Method in Calculation of Actuarial Liability of Pension Funds. International Journal of Global Operations Research, 5(3), 191–198. doi:10.47194/ijgor.v5i3.321.

Yang, Z., & Chen, X. (2024). Actuarial Evaluation of the Financial Backing Risk on Chinese Public Pension. SAGE Open, 14(3), 21582440241282225. doi:10.1177/21582440241282225.

Sokolov, E. V., & Kostyrin, E. V. (2019). Automated device for economic and mathematical modelling and assessment of efficiency of the mechanism of formation of insurance and accumulative parts of old-age labour pension. Patent 186353. Russian Federation, Moscow, Russia.

Sokolov, E. V., & Kostyrin, E. V. (2023). Management of development of the Russian citizens’ pension system based on personalised pension accounts. Management of Large-Scale Systems Development (MLSD’2023): Proceedings of the 16th International Conference, 26-28 September, 2023, Moscow, Russia.

Suo, S., & Kostyrin, E. V. (2024). Modeling of pension income and expenditures based on the Verhulst equation and polynomial regression with demographic projections. Economics and Mathematical Methods, 60(2), 50–66. doi:10.31857/s0424738824020054.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-028

Refbacks

  • There are currently no refbacks.