An Optimized Hybrid Model for Perishable Product Quality Inference in the Food Supply Chain

Muhammad Asrol, . Suharjito, Riyanto Jayadi

Abstract


The supply chain for perishable products faces significant challenges in monitoring and maintaining product quality. These products are particularly vulnerable to environmental dynamic conditions and variations in distribution and transportation. To address these challenges, leveraging the Internet of Things (IoT) and quality inference techniques during transportation can provide valuable insights for both consumers and producers. The objective of the research is to develop a model for inferring the quality of perishable products using an IoT sensor dataset to monitor perishable product quality continuously. This research applied a hybrid approach combining a Fuzzy Inference System (FIS), clustering models, and genetic algorithms to infer the product quality during supply chain distribution with IoT sensors. The result shows that the hybrid FIS model, which employs Gaussian membership functions and fuzzy c-means clustering for rule generation, achieves a high accuracy with an R²: 0.873. This research contributes to improving the model by employing genetic algorithms in optimizing the inference model by activating only five out of seven rules. The model optimization achieves optimal computation time while aiming to preserve model accuracy. However, test results indicate that the combination of rules has not yet significantly enhanced the model's accuracy, though it holds potential for future development.

 

Doi: 10.28991/ESJ-2025-09-01-027

Full Text: PDF


Keywords


Supply Chain Management; Optimization; Quality Control; Fuzzy Inference; Genetic Algorithms.

References


Bruhn, M. (2023). Quality Management for Services. Springer, Berlin, Germany. doi:10.1007/978-3-662-67032-3.

Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421–429. doi:10.1016/j.ijpe.2009.11.026.

Shukla, M., & Jharkharia, S. (2013). Agri‐fresh produce supply chain management: a state‐of‐the‐art literature review. International Journal of Operations & Production Management, 33(2), 114–158. doi:10.1108/01443571311295608.

Lejarza, F., & Baldea, M. (2022). An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products. European Journal of Operational Research, 297(3), 890–903. doi:10.1016/j.ejor.2021.04.057.

LaBuza, T.P. (1982). Shelf-Life Dating of Foods. Food & Nutrition Press, Inc., Westport, Ireland.

Ferguson, M., & Ketzenberg, M. E. (2006). Information Sharing to Improve Retail Product Freshness of Perishables. Production and Operations Management, 15(1), 57–73. doi:10.1111/j.1937-5956.2006.tb00003.x.

Göbel, C., Langen, N., Blumenthal, A., Teitscheid, P., & Ritter, G. (2015). Cutting food waste through cooperation along the food supply chain. Sustainability (Switzerland), 7(2), 1429–1445. doi:10.3390/su7021429.

Alfian, G., Syafrudin, M., Fitriyani, N. L., Rhee, J., Ma’arif, M. R., & Riadi, I. (2020). Traceability system using IoT and forecasting model for food supply chain. 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, November, 903–907. doi:10.1109/DASA51403.2020.9317011.

Zhu, L. (2017). Economic analysis of a traceability system for a two-level perishable food supply chain. Sustainability (Switzerland), 9(5), 682. doi:10.3390/su9050682.

Abad, E., Palacio, F., Nuin, M., Zárate, A. G. de, Juarros, A., Gómez, J. M., & Marco, S. (2009). RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of Food Engineering, 93(4), 394–399. doi:10.1016/j.jfoodeng.2009.02.004.

Gallo, A., Accorsi, R., Manzini, R., Santi, D., & Tufano, A. (2018). Improving integration in supply chain traceability systems for perishable products. Proceedings of the 4th International Food Operations and Processing Simulation Workshop (FoodOPS 2018), 28–36. doi:10.46354/i3m.2018.foodops.004.

Li, J., Zhang, R., Jin, Y., & Zhang, H. (2022). Optimal Path of Internet of Things Service in Supply Chain Management Based on Machine Learning Algorithms. Computational Intelligence and Neuroscience, 4844993. doi:10.1155/2022/4844993.

Srinivas, D., Kirthiga, N., Vani, V. D., Raj, V. H., Nijhawan, G., & Dhanraj, J. A. (2024). Enhancing Supply Chain Management Efficiency with IoT and Machine Learning Integration. Proceedings of 2024 International Conference on Science, Technology, Engineering and Management, ICSTEM 2024. doi:10.1109/ICSTEM61137.2024.10561126.

Wang, W. (2024). A IoT-Based Framework for Cross-Border E-Commerce Supply Chain Using Machine Learning and Optimization. IEEE Access, 12, 1852–1864. doi:10.1109/ACCESS.2023.3347452.

Jauhar, S. K., Harinath, S., Krishnaswamy, V., & Paul, S. K. (2024). Explainable artificial intelligence to improve the resilience of perishable product supply chains by leveraging customer characteristics. Annals of Operations Research. Springer, United States. doi:10.1007/s10479-024-06348-z.

Pal, A., & Kant, K. (2019). Internet of Perishable Logistics: Building Smart Fresh Food Supply Chain Networks. IEEE Access, 7, 17675–17695. doi:10.1109/ACCESS.2019.2894126.

Mohammadi, T., Sajadi, S. M., Najafi, S. E., & Taghizadeh-Yazdi, M. (2024). Multi Objective and Multi-Product Perishable Supply Chain with Vendor-Managed Inventory and IoT-Related Technologies. Mathematics, 12(5), 679. doi:10.3390/math12050679.

Sathiya, V., Nagalakshmi, K., Raju, K., & Lavanya, R. (2024). Tracking perishable foods in the supply chain using chain of things technology. Scientific Reports, 14(1), 21621. doi:10.1038/s41598-024-72617-3.

Selukar, M., Jain, P., & Kumar, T. (2022). Inventory control of multiple perishable goods using deep reinforcement learning for sustainable environment. Sustainable Energy Technologies and Assessments, 52, 102038. doi:10.1016/j.seta.2022.102038.

Hu, H., Xu, J., Liu, M., & Lim, M. K. (2023). Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning. Journal of Business Research, 156, 113480. doi:10.1016/j.jbusres.2022.113480.

Tsang, Y. P., Choy, K. L., Wu, C. H., Ho, G. T. S., & Lam, H. Y. (2019). An internet of things (IoT)-Based shelf life management system in perishable food e-commerce businesses. PICMET 2019 - Portland International Conference on Management of Engineering and Technology: Technology Management in the World of Intelligent Systems, Proceedings, 8893684. doi:10.23919/PICMET.2019.8893684.

Yan, R. (2017). Optimization approach for increasing revenue of perishable product supply chain with the Internet of Things. Industrial Management and Data Systems, 117(4), 729–741. doi:10.1108/IMDS-07-2016-0297.

Heising, J. K. (2014). Intelligent packaging for monitoring food quality: a case study on fresh fish. Ph.D. Thesis, Wageningen University and Research, Wageningen, Netherlands.

Alfian, G., Syafrudin, M., Farooq, U., Ma’arif, M. R., Syaekhoni, M. A., Fitriyani, N. L., Lee, J., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110(October 2019), 107016. doi:10.1016/j.foodcont.2019.107016.

Shahbazi, Z., & Byun, Y. C. (2021). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics (Switzerland), 10(1), 1–21. doi:10.3390/electronics10010041.

Kaya, A., Keçeli, A. S., Catal, C., & Tekinerdogan, B. (2020). Sensor failure tolerable machine learning-based food quality prediction model. Sensors (Switzerland), 20(11), 1–18. doi:10.3390/s20113173.

Wijaya, D. R., Sarno, R., & Zulaika, E. (2019). Noise filtering framework for electronic nose signals: An application for beef quality monitoring. Computers and Electronics in Agriculture, 157, 305–321. doi:10.1016/j.compag.2019.01.001.

Wang, X., & Li, D. (2012). A dynamic product quality evaluation-based pricing model for perishable food supply chains. Omega, 40(6), 906–917. doi:10.1016/j.omega.2012.02.001.

Sherlock, M., & Labuza, T. P. (1992). Consumer Perceptions of Consumer Time-Temperature Indicators for Use on Refrigerated Dairy Foods. Journal of Dairy Science, 75(11), 3167–3176. doi:10.3168/jds.S0022-0302(92)78081-3.

Thompson, A. K., Prange, R. K., Bancroft, R. D., & Puttongsiri, T. (Eds.). (2018). Controlled atmosphere storage of fruit and vegetables. CABI, Wallingford, United Kingdom. doi:10.1079/9781786393739.0000.

Aung, M. M., & Chang, Y. S. (2014). Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40(1), 198–207. doi:10.1016/j.foodcont.2013.11.016.

Wang, J., Yue, H., & Zhou, Z. (2017). An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network. Food Control, 79, 363–370. doi:10.1016/j.foodcont.2017.04.013.

Kumar, A., & Agrawal, S. (2024). A quality-based sustainable supply chain architecture for perishable products using image processing in the era of industry 4.0. Journal of Cleaner Production, 450(April), 141910. doi:10.1016/j.jclepro.2024.141910.

Gharehyakheh, A., Krejci, C. C., Cantu, J., & Rogers, K. J. (2020). A multi-objective model for sustainable perishable food distribution considering the impact of temperature on vehicle emissions and product shelf life. Sustainability (Switzerland), 12(16), 30–40. doi:10.3390/su12166668.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X.

Wijaya, D. R., Sarno, R., & Zulaika, E. (2018). Electronic nose dataset for beef quality monitoring in uncontrolled ambient conditions. Data in Brief, 21, 2414–2420. doi:10.1016/j.dib.2018.11.091.

Mamdani, E. H., & Assilian, S. (1999). Experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Human Computer Studies, 51(2), 135–147. doi:10.1006/ijhc.1973.0303.

Mamdani, E. H. (1974). Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. Proceedings of the Institution of Electrical Engineers, 121(12), 1585–1588. doi:10.1049/piee.1974.0328.

Phillis, Y. A., Grigoroudis, E., & Kouikoglou, V. S. (2011). Sustainability ranking and improvement of countries. Ecological Economics, 70(3), 542–553. doi:10.1016/j.ecolecon.2010.09.037.

Phillis, Y. A., Kouikoglou, V. S., & Verdugo, C. (2017). Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64, 254–265. doi:10.1016/j.compenvurbsys.2017.03.002.

Jayarathna, L., Kent, G., O’Hara, I., & Hobson, P. (2022). Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia. Land Use Policy, 114, 105986. doi:10.1016/j.landusepol.2022.105986.

Shutaywi, M., & Kachouie, N. N. (2021). Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy, 23(6), 1–17. doi:10.3390/e23060759.

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. doi:10.1109/ACCESS.2020.2988796.

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203. doi:10.1016/0098-3004(84)90020-7.

Izakian, H., & Abraham, A. (2011). Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Systems with Applications, 38(3), 1835–1838. doi:10.1016/j.eswa.2010.07.112.

Askari, S. (2017). A novel and fast MIMO fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis. Expert Systems with Applications, 84, 301–322. doi:10.1016/j.eswa.2017.04.045.

Savrun, M. M., & İnci, M. (2021). Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications. Journal of Cleaner Production, 299. doi:10.1016/j.jclepro.2021.126944.

Wang, L. X., & Mendel, J. M. (1992). Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man and Cybernetics, 22(6), 1414–1427. doi:10.1109/21.199466.

Jang, J. S. R. (1992). Self-Learning Fuzzy Controllers Based on Temporal Back Propagation. IEEE Transactions on Neural Networks, 3(5), 714–723. doi:10.1109/72.159060.

Berenji, H. R., & Khedkar, P. (1992). Learning and Tuning Fuzzy Logic Controllers Through Reinforcements. IEEE Transactions on Neural Networks, 3(5), 724–740. doi:10.1109/72.159061.

Leonori, S., Paschero, M., Rizzi, A., & Mascioli, F. M. F. (2019). FIS synthesis by clustering for microgrid energy management systems. Smart Innovation, Systems and Technologies, 102, 61–71. doi:10.1007/978-3-319-95098-3_6.

Barrios, J. A., Villanueva, C., Cavazos, A., & Colas, R. (2016). Fuzzy C-means Rule Generation for Fuzzy Entry Temperature Prediction in a Hot Strip Mill. Journal of Iron and Steel Research International, 23(2), 116–123. doi:10.1016/S1006-706X(16)30022-X.

İsen, E., & Boran, S. (2018). A Novel Approach Based on Combining ANFIS, Genetic Algorithm and Fuzzy c-Means Methods for Multiple Criteria Inventory Classification. Arabian Journal for Science and Engineering, 43(6), 3229–3239. doi:10.1007/s13369-017-2987-z.

Phillis, Y. A., Kouikoglou, V. S., & Andriantiatsaholiniaina, L. A. (2003). Sustainable development: A definition and assessment. Environmental Engineering and Management Journal, 2(4), 345–355. doi:10.30638/eemj.2003.030.

Grigoroudis, E., Kouikoglou, V. S., & Phillis, Y. A. (2014). SAFE 2013: Sustainability of countries updated. Ecological Indicators, 38, 61–66. doi:10.1016/j.ecolind.2013.10.022.

Yani, M., MacHfud, Asrol, M., Hambali, E., Papilo, P., Mursidah, S., & Marimin, M. (2022). An Adaptive Fuzzy Multi-Criteria Model for Sustainability Assessment of Sugarcane Agroindustry Supply Chain. IEEE Access, 10, 5497–5517. doi:10.1109/ACCESS.2022.3140519.

Thaseen Ikram, S., Mohanraj, V., Ramachandran, S., & Balakrishnan, A. (2023). An Intelligent Waste Management Application Using IoT and a Genetic Algorithm–Fuzzy Inference System. Applied Sciences (Switzerland), 13(6), 3943. doi:10.3390/app13063943.

Olunloyo, V. O. S., Ajofoyinbo, A. M., & Ibidapo-Obe, O. (2011). On Development of Fuzzy Controller: The Case of Gaussian and Triangular Membership Functions. Journal of Signal and Information Processing, 2(4), 257–265. doi:10.4236/jsip.2011.24036.

Adil, O., Ali, A., Ali, M., Ali, A. Y., & Sumait, B. S. (2015). Comparison between the Effects of Different Types of Membership Functions on Fuzzy Logic Controller Performance. International Journal of Emerging Engineering Research and Technology, 3, 76.

Deepa, S. N., & Jayalakshmi, N. Y. (2022). An Intelligent Neural Network Algorithm for Uncertainty Handling in Sensor Failure Scenario of Food Quality Assurance Model. Computer Assisted Methods in Engineering and Science, 29(1–2), 105–123. doi:10.24423/cames.409.

Wijaya, D. R., & Afianti, F. (2021). Information-Theoretic Ensemble Feature Selection with Multi-Stage Aggregation for Sensor Array Optimization. IEEE Sensors Journal, 21(1), 476–489. doi:10.1109/JSEN.2020.3000756.

Pulluri, K. K., & Kumar, V. N. (2022). Development of an Integrated Soft E-Nose for Food Quality Assessment. IEEE Sensors Journal, 22(15), 15111–15122. doi:10.1109/JSEN.2022.3182480.

Wijaya, D. R., Sarno, R., & Zulaika, E. (2021). DWTLSTM for electronic nose signal processing in beef quality monitoring. Sensors and Actuators, B: Chemical, 326, 128931. doi:10.1016/j.snb.2020.128931.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-027

Refbacks

  • There are currently no refbacks.