An Optimized Hybrid Model for Perishable Product Quality Inference in the Food Supply Chain
Abstract
Doi: 10.28991/ESJ-2025-09-01-027
Full Text: PDF
Keywords
References
Bruhn, M. (2023). Quality Management for Services. Springer, Berlin, Germany. doi:10.1007/978-3-662-67032-3.
Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421–429. doi:10.1016/j.ijpe.2009.11.026.
Shukla, M., & Jharkharia, S. (2013). Agri‐fresh produce supply chain management: a state‐of‐the‐art literature review. International Journal of Operations & Production Management, 33(2), 114–158. doi:10.1108/01443571311295608.
Lejarza, F., & Baldea, M. (2022). An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products. European Journal of Operational Research, 297(3), 890–903. doi:10.1016/j.ejor.2021.04.057.
LaBuza, T.P. (1982). Shelf-Life Dating of Foods. Food & Nutrition Press, Inc., Westport, Ireland.
Ferguson, M., & Ketzenberg, M. E. (2006). Information Sharing to Improve Retail Product Freshness of Perishables. Production and Operations Management, 15(1), 57–73. doi:10.1111/j.1937-5956.2006.tb00003.x.
Göbel, C., Langen, N., Blumenthal, A., Teitscheid, P., & Ritter, G. (2015). Cutting food waste through cooperation along the food supply chain. Sustainability (Switzerland), 7(2), 1429–1445. doi:10.3390/su7021429.
Alfian, G., Syafrudin, M., Fitriyani, N. L., Rhee, J., Ma’arif, M. R., & Riadi, I. (2020). Traceability system using IoT and forecasting model for food supply chain. 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, November, 903–907. doi:10.1109/DASA51403.2020.9317011.
Zhu, L. (2017). Economic analysis of a traceability system for a two-level perishable food supply chain. Sustainability (Switzerland), 9(5), 682. doi:10.3390/su9050682.
Abad, E., Palacio, F., Nuin, M., Zárate, A. G. de, Juarros, A., Gómez, J. M., & Marco, S. (2009). RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of Food Engineering, 93(4), 394–399. doi:10.1016/j.jfoodeng.2009.02.004.
Gallo, A., Accorsi, R., Manzini, R., Santi, D., & Tufano, A. (2018). Improving integration in supply chain traceability systems for perishable products. Proceedings of the 4th International Food Operations and Processing Simulation Workshop (FoodOPS 2018), 28–36. doi:10.46354/i3m.2018.foodops.004.
Li, J., Zhang, R., Jin, Y., & Zhang, H. (2022). Optimal Path of Internet of Things Service in Supply Chain Management Based on Machine Learning Algorithms. Computational Intelligence and Neuroscience, 4844993. doi:10.1155/2022/4844993.
Srinivas, D., Kirthiga, N., Vani, V. D., Raj, V. H., Nijhawan, G., & Dhanraj, J. A. (2024). Enhancing Supply Chain Management Efficiency with IoT and Machine Learning Integration. Proceedings of 2024 International Conference on Science, Technology, Engineering and Management, ICSTEM 2024. doi:10.1109/ICSTEM61137.2024.10561126.
Wang, W. (2024). A IoT-Based Framework for Cross-Border E-Commerce Supply Chain Using Machine Learning and Optimization. IEEE Access, 12, 1852–1864. doi:10.1109/ACCESS.2023.3347452.
Jauhar, S. K., Harinath, S., Krishnaswamy, V., & Paul, S. K. (2024). Explainable artificial intelligence to improve the resilience of perishable product supply chains by leveraging customer characteristics. Annals of Operations Research. Springer, United States. doi:10.1007/s10479-024-06348-z.
Pal, A., & Kant, K. (2019). Internet of Perishable Logistics: Building Smart Fresh Food Supply Chain Networks. IEEE Access, 7, 17675–17695. doi:10.1109/ACCESS.2019.2894126.
Mohammadi, T., Sajadi, S. M., Najafi, S. E., & Taghizadeh-Yazdi, M. (2024). Multi Objective and Multi-Product Perishable Supply Chain with Vendor-Managed Inventory and IoT-Related Technologies. Mathematics, 12(5), 679. doi:10.3390/math12050679.
Sathiya, V., Nagalakshmi, K., Raju, K., & Lavanya, R. (2024). Tracking perishable foods in the supply chain using chain of things technology. Scientific Reports, 14(1), 21621. doi:10.1038/s41598-024-72617-3.
Selukar, M., Jain, P., & Kumar, T. (2022). Inventory control of multiple perishable goods using deep reinforcement learning for sustainable environment. Sustainable Energy Technologies and Assessments, 52, 102038. doi:10.1016/j.seta.2022.102038.
Hu, H., Xu, J., Liu, M., & Lim, M. K. (2023). Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning. Journal of Business Research, 156, 113480. doi:10.1016/j.jbusres.2022.113480.
Tsang, Y. P., Choy, K. L., Wu, C. H., Ho, G. T. S., & Lam, H. Y. (2019). An internet of things (IoT)-Based shelf life management system in perishable food e-commerce businesses. PICMET 2019 - Portland International Conference on Management of Engineering and Technology: Technology Management in the World of Intelligent Systems, Proceedings, 8893684. doi:10.23919/PICMET.2019.8893684.
Yan, R. (2017). Optimization approach for increasing revenue of perishable product supply chain with the Internet of Things. Industrial Management and Data Systems, 117(4), 729–741. doi:10.1108/IMDS-07-2016-0297.
Heising, J. K. (2014). Intelligent packaging for monitoring food quality: a case study on fresh fish. Ph.D. Thesis, Wageningen University and Research, Wageningen, Netherlands.
Alfian, G., Syafrudin, M., Farooq, U., Ma’arif, M. R., Syaekhoni, M. A., Fitriyani, N. L., Lee, J., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110(October 2019), 107016. doi:10.1016/j.foodcont.2019.107016.
Shahbazi, Z., & Byun, Y. C. (2021). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics (Switzerland), 10(1), 1–21. doi:10.3390/electronics10010041.
Kaya, A., Keçeli, A. S., Catal, C., & Tekinerdogan, B. (2020). Sensor failure tolerable machine learning-based food quality prediction model. Sensors (Switzerland), 20(11), 1–18. doi:10.3390/s20113173.
Wijaya, D. R., Sarno, R., & Zulaika, E. (2019). Noise filtering framework for electronic nose signals: An application for beef quality monitoring. Computers and Electronics in Agriculture, 157, 305–321. doi:10.1016/j.compag.2019.01.001.
Wang, X., & Li, D. (2012). A dynamic product quality evaluation-based pricing model for perishable food supply chains. Omega, 40(6), 906–917. doi:10.1016/j.omega.2012.02.001.
Sherlock, M., & Labuza, T. P. (1992). Consumer Perceptions of Consumer Time-Temperature Indicators for Use on Refrigerated Dairy Foods. Journal of Dairy Science, 75(11), 3167–3176. doi:10.3168/jds.S0022-0302(92)78081-3.
Thompson, A. K., Prange, R. K., Bancroft, R. D., & Puttongsiri, T. (Eds.). (2018). Controlled atmosphere storage of fruit and vegetables. CABI, Wallingford, United Kingdom. doi:10.1079/9781786393739.0000.
Aung, M. M., & Chang, Y. S. (2014). Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40(1), 198–207. doi:10.1016/j.foodcont.2013.11.016.
Wang, J., Yue, H., & Zhou, Z. (2017). An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network. Food Control, 79, 363–370. doi:10.1016/j.foodcont.2017.04.013.
Kumar, A., & Agrawal, S. (2024). A quality-based sustainable supply chain architecture for perishable products using image processing in the era of industry 4.0. Journal of Cleaner Production, 450(April), 141910. doi:10.1016/j.jclepro.2024.141910.
Gharehyakheh, A., Krejci, C. C., Cantu, J., & Rogers, K. J. (2020). A multi-objective model for sustainable perishable food distribution considering the impact of temperature on vehicle emissions and product shelf life. Sustainability (Switzerland), 12(16), 30–40. doi:10.3390/su12166668.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X.
Wijaya, D. R., Sarno, R., & Zulaika, E. (2018). Electronic nose dataset for beef quality monitoring in uncontrolled ambient conditions. Data in Brief, 21, 2414–2420. doi:10.1016/j.dib.2018.11.091.
Mamdani, E. H., & Assilian, S. (1999). Experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Human Computer Studies, 51(2), 135–147. doi:10.1006/ijhc.1973.0303.
Mamdani, E. H. (1974). Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. Proceedings of the Institution of Electrical Engineers, 121(12), 1585–1588. doi:10.1049/piee.1974.0328.
Phillis, Y. A., Grigoroudis, E., & Kouikoglou, V. S. (2011). Sustainability ranking and improvement of countries. Ecological Economics, 70(3), 542–553. doi:10.1016/j.ecolecon.2010.09.037.
Phillis, Y. A., Kouikoglou, V. S., & Verdugo, C. (2017). Urban sustainability assessment and ranking of cities. Computers, Environment and Urban Systems, 64, 254–265. doi:10.1016/j.compenvurbsys.2017.03.002.
Jayarathna, L., Kent, G., O’Hara, I., & Hobson, P. (2022). Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia. Land Use Policy, 114, 105986. doi:10.1016/j.landusepol.2022.105986.
Shutaywi, M., & Kachouie, N. N. (2021). Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy, 23(6), 1–17. doi:10.3390/e23060759.
Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. doi:10.1109/ACCESS.2020.2988796.
Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203. doi:10.1016/0098-3004(84)90020-7.
Izakian, H., & Abraham, A. (2011). Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Systems with Applications, 38(3), 1835–1838. doi:10.1016/j.eswa.2010.07.112.
Askari, S. (2017). A novel and fast MIMO fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis. Expert Systems with Applications, 84, 301–322. doi:10.1016/j.eswa.2017.04.045.
Savrun, M. M., & İnci, M. (2021). Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications. Journal of Cleaner Production, 299. doi:10.1016/j.jclepro.2021.126944.
Wang, L. X., & Mendel, J. M. (1992). Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man and Cybernetics, 22(6), 1414–1427. doi:10.1109/21.199466.
Jang, J. S. R. (1992). Self-Learning Fuzzy Controllers Based on Temporal Back Propagation. IEEE Transactions on Neural Networks, 3(5), 714–723. doi:10.1109/72.159060.
Berenji, H. R., & Khedkar, P. (1992). Learning and Tuning Fuzzy Logic Controllers Through Reinforcements. IEEE Transactions on Neural Networks, 3(5), 724–740. doi:10.1109/72.159061.
Leonori, S., Paschero, M., Rizzi, A., & Mascioli, F. M. F. (2019). FIS synthesis by clustering for microgrid energy management systems. Smart Innovation, Systems and Technologies, 102, 61–71. doi:10.1007/978-3-319-95098-3_6.
Barrios, J. A., Villanueva, C., Cavazos, A., & Colas, R. (2016). Fuzzy C-means Rule Generation for Fuzzy Entry Temperature Prediction in a Hot Strip Mill. Journal of Iron and Steel Research International, 23(2), 116–123. doi:10.1016/S1006-706X(16)30022-X.
İsen, E., & Boran, S. (2018). A Novel Approach Based on Combining ANFIS, Genetic Algorithm and Fuzzy c-Means Methods for Multiple Criteria Inventory Classification. Arabian Journal for Science and Engineering, 43(6), 3229–3239. doi:10.1007/s13369-017-2987-z.
Phillis, Y. A., Kouikoglou, V. S., & Andriantiatsaholiniaina, L. A. (2003). Sustainable development: A definition and assessment. Environmental Engineering and Management Journal, 2(4), 345–355. doi:10.30638/eemj.2003.030.
Grigoroudis, E., Kouikoglou, V. S., & Phillis, Y. A. (2014). SAFE 2013: Sustainability of countries updated. Ecological Indicators, 38, 61–66. doi:10.1016/j.ecolind.2013.10.022.
Yani, M., MacHfud, Asrol, M., Hambali, E., Papilo, P., Mursidah, S., & Marimin, M. (2022). An Adaptive Fuzzy Multi-Criteria Model for Sustainability Assessment of Sugarcane Agroindustry Supply Chain. IEEE Access, 10, 5497–5517. doi:10.1109/ACCESS.2022.3140519.
Thaseen Ikram, S., Mohanraj, V., Ramachandran, S., & Balakrishnan, A. (2023). An Intelligent Waste Management Application Using IoT and a Genetic Algorithm–Fuzzy Inference System. Applied Sciences (Switzerland), 13(6), 3943. doi:10.3390/app13063943.
Olunloyo, V. O. S., Ajofoyinbo, A. M., & Ibidapo-Obe, O. (2011). On Development of Fuzzy Controller: The Case of Gaussian and Triangular Membership Functions. Journal of Signal and Information Processing, 2(4), 257–265. doi:10.4236/jsip.2011.24036.
Adil, O., Ali, A., Ali, M., Ali, A. Y., & Sumait, B. S. (2015). Comparison between the Effects of Different Types of Membership Functions on Fuzzy Logic Controller Performance. International Journal of Emerging Engineering Research and Technology, 3, 76.
Deepa, S. N., & Jayalakshmi, N. Y. (2022). An Intelligent Neural Network Algorithm for Uncertainty Handling in Sensor Failure Scenario of Food Quality Assurance Model. Computer Assisted Methods in Engineering and Science, 29(1–2), 105–123. doi:10.24423/cames.409.
Wijaya, D. R., & Afianti, F. (2021). Information-Theoretic Ensemble Feature Selection with Multi-Stage Aggregation for Sensor Array Optimization. IEEE Sensors Journal, 21(1), 476–489. doi:10.1109/JSEN.2020.3000756.
Pulluri, K. K., & Kumar, V. N. (2022). Development of an Integrated Soft E-Nose for Food Quality Assessment. IEEE Sensors Journal, 22(15), 15111–15122. doi:10.1109/JSEN.2022.3182480.
Wijaya, D. R., Sarno, R., & Zulaika, E. (2021). DWTLSTM for electronic nose signal processing in beef quality monitoring. Sensors and Actuators, B: Chemical, 326, 128931. doi:10.1016/j.snb.2020.128931.
DOI: 10.28991/ESJ-2025-09-01-027
Refbacks
- There are currently no refbacks.