Using Mixed Reality (MR) as an Emerging Technology for Improving Higher Education: Analysis of Mental Workload

Santiago Criollo-C, Andrea Guerrero-Arias, Diego Buenaño-Fernández, Ángel Jaramillo-Alcazar, Sergio Luján-Mora

Abstract


This study aims to evaluate the mental workload perceived by students when using Build_3D, a mixed reality (MR) application, as an educational tool for learning PC and smartphone hardware, as well as to analyze teachers' perceptions of its impact on the teaching process. The NASA-TLX tool was applied to measure mental workload in 60 students, assessing six dimensions: mental demand, physical demand, temporal demand, perceived performance, effort, and frustration level. Additionally, qualitative observations were collected from teachers regarding the use of MR in practical learning environments. The results show that the perceived performance dimension achieved the highest score, highlighting the application’s effectiveness in improving learning outcomes. Mental and temporal demands were moderate, while effort, frustration, and physical demand were low. Teachers noted that Build_3D enhances practical learning by enabling the repetition of complex tasks and fostering student motivation through immersive experiences. As a novel contribution, the study highlights the capacity of MR tools to integrate theoretical and practical concepts in an interactive environment, reducing cognitive load and promoting autonomous and personalized learning.

 

Doi: 10.28991/ESJ-2024-SIED1-024

Full Text: PDF


Keywords


Active Learning; Authentic Learning; AR Application; AR in Learning; Higher Education; Oculus; Mental Workload; Mixed Reality; Nasa-TLX.

References


Terzieva, V., Paunova-Hubenova, E., & Todorova, K. (2022). Emerging Technologies in Smart Classroom Education. Lecture Notes in Networks and Systems, 364 LNNS, 89–98. doi:10.1007/978-3-030-92604-5_9.

Al-Masri, E., Kabu, S., & Dixith, P. (2020). Emerging Hardware Prototyping Technologies as Tools for Learning. IEEE Access 8, 80207–80217. doi:10.1109/ACCESS.2020.2991014.

Ali, A. A., Dafoulas, G. A., & Augusto, J. C. (2019). Collaborative Educational Environments Incorporating Mixed Reality Technologies: A Systematic Mapping Study. IEEE Transactions on Learning Technologies, 12(3), 321–332. doi:10.1109/TLT.2019.2926727.

Pan, X., Zheng, M., Xu, X., & Campbell, A. G. (2021). Knowing Your Student: Targeted Teaching Decision Support through Asymmetric Mixed Reality Collaborative Learning. IEEE Access, 9, 164742–164751. doi:10.1109/ACCESS.2021.3134589.

Yang, C. H., Liu, S. F., Lin, C. Y., & Liu, C. F. (2020). Immersive Virtual Reality-Based Cardiopulmonary Resuscitation Interactive Learning Support System. IEEE Access, 8, 120870–120880. doi:10.1109/ACCESS.2020.3006280.

Albeedan, M., Kolivand, H., & Hammady, R. (2023). Evaluating the Use of Mixed Reality in CSI Training Through the Integration of the Task-Technology Fit and Technology Acceptance Model. IEEE Access, 11, 114732–114752. doi:10.1109/ACCESS.2023.3323949.

Schaf, F. M., & Pereira, C. E. (2009). Integrating mixed-reality remote experiments into virtual learning environments using interchangeable components. IEEE Transactions on Industrial Electronics, 56(12), 4776–4783. doi:10.1109/TIE.2009.2026369.

Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., & Gain, J. (2018). A survey of augmented, virtual, and mixed reality for cultural heritage. Journal on Computing and Cultural Heritage, 11(2), 1-36. doi:10.1145/3145534.

Vasilevski, N., & Birt, J. (2020). Analysing construction student experiences of mobile mixed reality enhanced learning in virtual and augmented reality environments. Research in Learning Technology, 28. doi:10.25304/rlt.v28.2329.

Laurens-Arredondo, L. (2022). Mobile augmented reality adapted to the ARCS model of motivation: a case study during the COVID-19 pandemic. Education and Information Technologies, 27(6), 7927–7946. doi:10.1007/s10639-022-10933-9.

Criollo-C, S., Abad-Vásquez, D., Martic-Nieto, M., Velásquez-G, F. A., Pérez-Medina, J. L., & Luján-Mora, S. (2021). Towards a new learning experience through a mobile application with augmented reality in engineering education. Applied Sciences (Switzerland), 11(11), 4921. doi:10.3390/app11114921.

Okura, F., Kanbara, M., & Yokoya, N. (2015). Mixed-reality world exploration using image-based rendering. Journal on Computing and Cultural Heritage, 8(2), 1-26. doi:10.1145/2700428.

Fidalgo, C. G., Yan, Y., Cho, H., Sousa, M., Lindlbauer, D., & Jorge, J. (2023). A Survey on Remote Assistance and Training in Mixed Reality Environments. IEEE Transactions on Visualization and Computer Graphics, 29(5), 2291-2303. doi:10.1109/TVCG.2023.3247081.

Sankaran, N. K., Nisar, H. J., Zhang, J., Formella, K., Amos, J., Barker, L. T., Vozenilek, J. A., Lavalle, S. M., & Kesavadas, T. (2019). Efficacy study on interactive mixed reality (IMR) software with sepsis prevention medical education. 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings, 664–670. doi:10.1109/VR.2019.8798089.

Hossain, M. F., Barman, S., Biswas, N., & Bahalul Haque, A. K. M. (2021). Augmented reality in medical education: AR bones. Proceedings - IEEE 2021 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2021, 348–353. doi:10.1109/ICCCIS51004.2021.9397108.

Von Jan, U., Noll, C., Behrends, M., & Albrecht, U. V. (2012). MARble - Augmented reality in medical education. Biomedizinische Technik, 57(SUPPL. 1 TRACK-A), 67–70. doi:10.1515/bmt-2012-4252.

Abdullah, N. A. S., & Rokmain, N. S. S. (2023). Learning Human Anatomy Using Augmented Reality Mobile Application. 2023 International Conference on Digital Applications, Transformation and Economy, ICDATE 2023, 1–5. doi:10.1109/ICDATE58146.2023.10248797.

Gürçınar, E., & Esen, Ö. C. (2018). The application of augmented reality in interior design education. DS 91: Proceedings of NordDesign 2018, 14th-17th August 2018, Linköping, Sweden.

Kounlaxay, K., Shim, Y., Kang, S. J., Kwak, H. Y., & Kim, S. K. (2021). Learning media on mathematical education based on augmented reality. KSII Transactions on Internet and Information Systems (TIIS), 15(3), 1015-1029.

Rossano, V., Lanzilotti, R., Cazzolla, A., & Roselli, T. (2020). Augmented Reality to Support Geometry Learning. IEEE Access, 8, 107772–107780. doi:10.1109/ACCESS.2020.3000990.

Nechypurenko, P. P., Starova, T. V., Selivanova, T. V., Tomilina, A. O., & Uchitel, A. D. (2018). Use of augmented reality in chemistry education. CEUR Workshop Proceedings, 2257, 15–23. doi:10.31812/pedag.v51i0.3650.

Tomaschko, M., & Hohenwarter, M. (2019). Augmented Reality in Mathematics Education: The Case of GeoGebra AR. Augmented Reality in Educational Settings, 325–346. doi:10.1163/9789004408845_014.

Sendari, S., Anggreani, D., Jiono, M., Nurhandayani, A., & Suardi, C. (2020). Augmented reality performance in detecting hardware components using marker based tracking method. 4th International Conference on Vocational Education and Training, ICOVET 2020, 175–179. doi:10.1109/ICOVET50258.2020.9229895.

Shrestha, M. (2021). Augmented Reality Mobile Tool for Engineering Education. ASEE Annual Conference and Exposition, Conference Proceedings, Virtual Conference, 1-18. doi:10.18260/1-2--36731.

Herrington, J., & Parker, J. (2013). Emerging technologies as cognitive tools for authentic learning. British Journal of Educational Technology, 44(4), 607–615. doi:10.1111/bjet.12048.

Criollo-C, S., Enrique Cerezo Uzcategui, J., Guerrero-Arias, A., Dwinggo Samala, A., Rawas, S., & Lujan-Mora, S. (2024). Analysis of the Mental Workload Associated With the Use of Virtual Reality Technology as Support in the Higher Educational Model. IEEE Access, 12, 114370–114381. doi:10.1109/ACCESS.2024.3445301.

Zhang, L., Wade, J., Bian, D., Fan, J., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2017). Cognitive Load Measurement in a Virtual Reality-Based Driving System for Autism Intervention. IEEE Transactions on Affective Computing 8(2), 176-189. doi:10.1109/TAFFC.2016.2582490.

NASA. (1986). NASA Task Load Index (NASA-TLX). NASA, California, United States. Available online: https://ntrs.nasa.gov/api/citations/20000021488/downloads/20000021488.pdf (accessed December 2024).

Cao, A., Chintamani, K. K., Pandya, A. K., & Ellis, R. D. (2009). NASA TLX: Software for assessing subjective mental workload. Behavior Research Methods, 41(1), 113–117. doi:10.3758/BRM.41.1.113.

Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3), 251–296. doi:10.1023/A:1022193728205.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction 4(4), 295–312. doi:10.1016/0959-4752(94)90003-5.

Mayer, R. E. (1989). Models for Understanding. Review of Educational Research, 59(1), 43–64. doi:10.3102/00346543059001043.

Kolb, D. A. (1984). Experiential Learning: Experience as The Source of Learning and Development. Prentice Hall, Inc., 20–38. doi:10.1016/B978-0-7506-7223-8.50017-4.

Putranda, I. G., Yumna, A. M., Rosmansyah, Y., & Sukmana, Y. (2023). Exploring Audio Processing in Mixed Reality to Boost Motivation in Piano Learning. IEEE Access, 11, 71194–71200. doi:10.1109/ACCESS.2023.3293250.

Refat, N., Rahman, M. A., Asyhari, A. T., Kurniawan, I. F., Bhuiyan, M. Z. A., & Kassim, H. (2019). Interactive learning experience-driven smart communications networks for cognitive load management in grammar learning context. IEEE Access, 7, 64545–64557. doi:10.1109/ACCESS.2019.2915174.

Bakar, W. A. W. A., Man, M., Solehan, M. A., & Sabri, I. A. A. (2021). GAAR: Gross Anatomy using Augmented Reality Mobile Application. International Journal of Advanced Computer Science and Applications, 12(5), 162–168. doi:10.14569/IJACSA.2021.0120520.

Sanusi, A. N. Z., Abdullah, F., Kassim, M. H., & Tidjani, A. A. (2018). Architectural history education: Students’ perception on mobile augmented reality learning experience. Advanced Science Letters, 24(11), 8171-8175.

Redondo, E., Navarro, I., Sánchez, A., & Fonseca, D. (2011). Visual interfaces and user experience: Augmented reality for architectural education: One study case and work in progress. Communications in Computer and Information Science, 166 (1), 355–367. doi:10.1007/978-3-642-21984-9_31.

Yang, S., Mei, B., & Yue, X. (2018). Mobile Augmented Reality Assisted Chemical Education: Insights from Elements 4D. Journal of Chemical Education, 95(6), 1060–1062. doi:10.1021/acs.jchemed.8b00017.

Luis, C. E. M., Mellado, R. C., & Díaz, B. A. (2013). PBL methodologies with embedded augmented reality in higher maritime education: Augmented project definitions for chemistry practices. Procedia Computer Science 25, 402–405. doi:10.1016/j.procs.2013.11.050.

Gonzalez-Sosa, E., Perez, P., Tolosana, R., Kachach, R., & Villegas, A. (2020). Enhanced Self-Perception in Mixed Reality: Egocentric Arm Segmentation and Database with Automatic Labeling. IEEE Access, 8, 146887–146900. doi:10.1109/ACCESS.2020.3013016.

Acheampong, R., Balan, T. C., Popovici, D. M., & Rekeraho, A. (2022). Security Scenarios Automation and Deployment in Virtual Environment using Ansible. 14th International Conference on Communications, COMM 2022 - Proceedings, 1–7. doi:10.1109/COMM54429.2022.9817150.

Chen, C. Y., Chang, B. R., & Huang, P. Sen. (2014). Multimedia augmented reality information system for museum guidance. Personal and Ubiquitous Computing, 18(2), 315–322. doi:10.1007/s00779-013-0647-1.

Lee, L. K., Chui, K. T., Chiu, C. M., Lo, P. Y., Tsoi, S. W., & Wu, N. I. (2021). An intelligent augmented reality mobile application for heritage conservation education. International Conference on Smart Systems and Advanced Computing (Syscom-2021), CEUR Workshop Proceedings, Volume 3080, 1-7.

Szlachta, A. M., & Ramos, M. E. T. (2019). Augmented reality games and the possibilities for history heritage education. Metis-Historia E Cultura, 18(35), 97–119.

Park, K. B., Choi, S. H., Lee, J. Y., Ghasemi, Y., Mohammed, M., & Jeong, H. (2021). Hands-free human-robot interaction using multimodal gestures and deep learning in wearable mixed reality. IEEE Access, 9, 55448–55464. doi:10.1109/ACCESS.2021.3071364.


Full Text: PDF

DOI: 10.28991/ESJ-2024-SIED1-024

Refbacks

  • There are currently no refbacks.