A Novel Approach to Enhancing the Effectiveness of Chemistry Teaching by Preservice Teachers

Akylbek Meirbekov, Dinara Berdi, Zhanat Burayeva, Ilyas Ikramov, Makpal Sarbaeva

Abstract


The objective of this article is to develop a new approach for improving the effectiveness of chemistry teaching, which involves transforming the teaching process via the use of interactive digital technologies. The research methodology is based on the Self-Determination Theory (SDT) and the Stimulus-Organism-Response (SOR) model. The study explores key constructs such as Perceived Usability (PU), Perceived Autonomy (PAU), Perceived Teaching Support (PTS), Perceived Competency (PCM), Perceived Relatedness (PRT), Perceived Ease of Use (PEOU), Cognitive Teaching Involvement (CTI), and Affective Teaching Involvement (ATI), examining their influence on teaching performance. Data were collected from 254 preservice chemistry teachers trained at Akhmet Yassawi International Kazakh-Turkish University, Kazakhstan. Structural equation modeling (SEM) was applied to test the scientific hypotheses. The findings showed that PU, PEOU, PAU, and PTS have a significant effect on CTI and ATI, which in turn have a positive effect on teaching effectiveness. In other words, the study confirms the importance of user-friendly and effective digital tools in developing positive attitudes towards technology adoption. The novelty of this paper comprises the author's concept of the educational process transformation through the usage of interactive digital technologies, which increases the chemistry education effectiveness.

 

Doi: 10.28991/ESJ-2025-09-01-04

Full Text: PDF


Keywords


Novel Educational Approach; Educational Interactive Digital Technologies; Chemistry Teaching Quality; Stimulus-Organism-Response (SOR); SDT Theory; Preservice Teachers; Kazakhstan.

References


Zarubina, V., Zarubin, M., Yessenkulova, Z., Salimbayeva, R., & Satbaeva, G. (2024). Digital transformation of the promotion of educational services of Kazakhstani universities. Journal of Innovation and Entrepreneurship, 13(1), 3. doi:10.1186/s13731-023-00355-3.

Zhashkenova, R., Pritvorova, T., Talimova, L., Mazhitova, S., Dauletova, A., & Kernebaev, A. (2021). Analysis of the transformation of higher educational institutions through entrepreneurship in the conditions of digitalization. International Journal of Entrepreneurship, 25(4), 1-10.

Berdykulova, G. M., Daineko, Y. A., Kamysbayev, M. K., & Abdinova, M. K. (2022). What Experience and Survey Say About University Digitalization in Kazakhstan? Proceedings of the 7th International Conference on Digital Technologies in Education, Science and Industry (DTESI 2022), 20-21 October, 2022, Almaty, Kazakhstan.

Nurtayeva, D., Kredina, A., Kireyeva, A., Satybaldin, A., & Ainakul, N. (2024). The role of digital technologies in higher education institutions: The case of Kazakhstan. Problems and Perspectives in Management, 22(1), 562–577. doi:10.21511/ppm.22(1).2024.45.

Ngo, T. T. A. (2023). The Perception by University Students of the Use of ChatGPT in Education. International Journal of Emerging Technologies in Learning, 18(17), 4–19. doi:10.3991/ijet.v18i17.39019.

Berdi, D., Niyazova, G., Bayterekova, N., Koshanova, G., & Usembayeva, I. (2024). Digital hygiene skills and cyberbullying reduction: a study among teenagers in Kazakhstan. International Journal of Evaluation and Research in Education, 13(6), 4170–4188. doi:10.11591/ijere.v13i6.28418.

Dahri, N. A., Vighio, M. S., Al-Rahmi, W. M., & Alismaiel, O. A. (2022). Usability Evaluation of Mobile App for the Sustainable Professional Development of Teachers. International Journal of Interactive Mobile Technologies, 16(16), 4–30. doi:10.3991/ijim.v16i16.32015.

Meirbekov, A., Nyshanova, S., Meiirbekov, A., Kazykhankyzy, L., Burayeva, Z., & Abzhekenova, B. (2024). Digitisation of English language education: Instagram and TikTok online educational blogs and courses vs. traditional academic education. How to increase student motivation? Education and Information Technologies, 29(11), 13635–13662. doi:10.1007/s10639-023-12396-y.

Turysbayeva, A., Zhumabayeva, A., Yessenova, K., Bainazarova, T., & Maigeldiyeva, S. (2023). The impact of formative assessment techniques on students’ self-assessment skills. Journal of Education and E-Learning Research, 10(4), 657–665. doi:10.20448/jeelr.v10i4.5045.

Hetrick, A. R. (2019). Using the Technology Acceptance Model to Determine Student Perception of E-learning Readiness in Kazakhstan. PhD Thesis, Boise State University, Boise, United States. doi:10.18122/td/1524/boisestate.

Huang, F., Sánchez-Prieto, J. C., Teo, T., García-Peñalvo, F. J., Olmos-Migueláñez, S., & Zhao, C. (2021). A cross-cultural study on the influence of cultural values and teacher beliefs on university teachers’ information and communications technology acceptance. Educational Technology Research and Development, 69(2), 1271–1297. doi:10.1007/s11423-021-09941-2.

Yedilbayev, Y., Sarybayeva, A., Zharylgapova, D., Shektibayev, N., Usembayeva, I., & Kurbanbekov, B. (2023). Factors influencing future physics teachers’ acceptance of information and communicative competence technologies: A survey study. Cogent Education, 10(1), 2212119. doi:10.1080/2331186X.2023.2212119.

Mukataeva, Z., Dinmukhamedova, A., Kabieva, S., Baidalinova, B., Khamzina, S., Zekenova, L., & Aizman, R. (2023). Comparative characteristics of developing morphofunctional features of schoolchildren from different climatic and geographical regions. Journal of Pediatric Endocrinology and Metabolism, 36(2), 158–166. doi:10.1515/jpem-2022-0474.

Hussaini, I., Ibrahim, S., Wali, B., Libata, I., & Musa, U. (2020). Effectiveness of Google classroom as a digital tool in teaching and learning: Students’ perceptions. International Journal of Research and Innovation in Social Science (IJRISS), 4(4), 51-54.

Faresta, R. A., Nicholas, T. Z. S. B., Chi, Y., Sinambela, I. A. N., & Mopoliu, A. Z. (2024). Utilization of Technology in Physics Education: A Literature Review and Implications for the Future Physics Learning. Lensa: Jurnal Kependidikan Fisika, 12(1), 1. doi:10.33394/j-lkf.v12i1.11676.

Krajcik, J. S., & Mun, K. (2014). Promises and challenges of using learning technologies to promote student learning of science. In Handbook of research on science education, volume II, Routledge, Milton Park, United States. doi:10.4324/9780203097267-28.

Lewis, D. I. (2014). The pedagogical benefits and pitfalls of virtual tools for teaching and learning laboratory practices in the biological sciences. The Higher Education Academy: STEM, 1-30.

Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050–1078. doi:10.1002/tea.20437.

Abdullahi, A. M., & Chimbo, B. (2023). Co-designing a framework for a persuasive educational technology tool for motivating female students for enrolment into Science, Technology, Engineering and Mathematics disciplines. The Journal for Transdisciplinary Research in Southern Africa, 19(1), 1349. doi:10.4102/td.v19i1.1349.

Savchuk, G., Iakimova, O., & Yufereva, A. (2019). Students from central Asia in Russian universities: Social media as a tool for adjustment. Proceedings of the 18th European Conference on E-Learning, 87. doi:10.34190/eel.19.045.

Kazantseva, L., Nicolini, P., & Cirilli, E. (2019). E-Learning, Professional Training, and Digital Tools: New Opportunities for Students of All Ages. EDULEARN19 Proceedings, 1, 6701–6707. doi:10.21125/edulearn.2019.1609.

Wong, K. M. (2021). “A design framework for enhancing engagement in student-centered learning: own it, learn it, and share it” by Lee and Hannafin (2016): an international perspective. Educational Technology Research and Development, 69(1), 93–96. doi:10.1007/s11423-020-09842-w.

Aguti, B., Walters, R. J., & Wills, G. B. (2014). Effective Use of E-Learning Technologies to Promote Student Centered Learning Paradigms within Higher Education Institutions. International Journal for E-Learning Security, 4(2), 391–398. doi:10.20533/ijels.2046.4568.2014.0051.

Otto, S., Bertel, L. B., Lyngdorf, N. E. R., Markman, A. O., Andersen, T., & Ryberg, T. (2024). Emerging Digital Practices Supporting Student-Centered Learning Environments in Higher Education: A Review of Literature and Lessons Learned from the Covid-19 Pandemic. Education and Information Technologies, 29(2), 1673–1696. doi:10.1007/s10639-023-11789-3.

Kolil, V. K., & Achuthan, K. (2024). Virtual labs in chemistry education: A novel approach for increasing student’s laboratory educational consciousness and skills. Education and Information Technologies, 29(18), 25307–25331. doi:10.1007/s10639-024-12858-x.

Skliarova, I., Meireles, I., Martins, N., Tchemisova, T., & Cação, I. (2022). Enriching Traditional Higher STEM Education with Online Teaching and Learning Practices: Students’ Perspective. Education Sciences, 12(11), 806. doi:10.3390/educsci12110806.

Alberto, M. C. L., Viviana, B. V. C., Vladimir, B. E. C., & Fernanda, P. A. P. (2024). Innovative strategies to strengthen teaching-researching skills in chemistry and biology education: a systematic literature review. Frontiers in Education, 9, 1363132. doi:10.3389/feduc.2024.1363132.

Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied Sciences (Switzerland), 10(16), 5660. doi:10.3390/app10165660.

Dosymov, Y., Usembayeva, I., Polatuly, S., Ramankulov, S., Kurbanbekov, B., Mintassova, A., & Mussakhan, N. (2023). Effectiveness of Computer Modeling in the Study of Electrical Circuits: Application and Evaluation. International Journal of Engineering Pedagogy, 13(4), 93–112. doi:10.3991/ijep.v13i4.34921.

Almukhambetova, A. (2023). Exploring STEM Teacher Educators’ Gender Awareness and Understanding of Gender-responsive Pedagogies in Kazakhstan. The Political Economy of Education in Central Asia. The Steppe and Beyond: Studies on Central Asia, Palgrave Macmillan, Singapore. doi:10.1007/978-981-99-8517-3_6.

Azhmukhambetov, A. (2020). Teachers’ experiences of the updated pedagogy within the scope of the curriculum reform: A case study of two mainstream schools in Kazakhstan. Master Thesis, Nazarbayev University Graduate School of Education, Nur-Sultan city, Kazakhstan.

Zharylkassyn, M. B. (2023). Integrating Continuing professional development with Education system reform in Kazakhstan. Materials of International Practical Internet Conference “Challenges of Science,” 6, 22–28. doi:10.31643/2023.03.

Sarmurzin, Y., Amanzhol, N., Toleubayeva, K., Zhunusova, M., & Amanova, A. (2021). The impact of OECD research on the education system of Kazakhstan. Asia Pacific Education Review, 22(4), 757–766. doi:10.1007/s12564-021-09715-8.

Islam, J., & Rahman, Z. (2017). The impact of online brand community characteristics on customer engagement: An application of Stimulus-Organism-Response paradigm. Telematics and Informatics, 34(4), 96–109. doi:10.1016/j.tele.2017.01.004.

Kim, M. J., Lee, C. K., & Jung, T. (2020). Exploring Consumer Behavior in Virtual Reality Tourism Using an Extended Stimulus-Organism-Response Model. Journal of Travel Research, 59(1), 69–89. doi:10.1177/0047287518818915.

ay, D. K. (2023). A Transcendental Phenomenological Study of the Lived Experiences of Middle Managers: Self-Determined Lifelong Learning in the Banking Industry, PhD Thesis, Liberty University, Lynchburg, United States.

Lincoln, A. (2019). Can a blended learning environment enhance teaching and learning in large heterogeneous first-year classes?: a study in a private higher education institution. PhD Thesis, Queen's University Belfast, Belfast, United Kingdom.

Corey, A. (2019). Teacher as facilitator: a case study of enhanced student agency. Master Thesis, Memorial University of Newfoundland, St. John's, Canada.

Schneider, S., Nebel, S., Beege, M., & Rey, G. D. (2018). The autonomy-enhancing effects of choice on cognitive load, motivation and learning with digital media. Learning and Instruction, 58, 161–172. doi:10.1016/j.learninstruc.2018.06.006.

Zainuddin, Z. (2018). Students’ learning performance and perceived motivation in gamified flipped-class instruction. Computers and Education, 126, 75–88. doi:10.1016/j.compedu.2018.07.003.

Jacoby, J. (2002). Stimulus‐Organism‐Response Reconsidered: An Evolutionary Step in Modeling (Consumer) Behavior. Journal of Consumer Psychology, 12(1), 51–57. doi:10.1207/s15327663jcp1201_05.

Floh, A., & Madlberger, M. (2013). The role of atmospheric cues in online impulse-buying behavior. Electronic Commerce Research and Applications, 12(6), 425–439. doi:10.1016/j.elerap.2013.06.001.

Liu, H., Chu, H., Huang, Q., & Chen, X. (2016). Enhancing the flow experience of consumers in China through interpersonal interaction in social commerce. Computers in Human Behavior, 58, 306–314. doi:10.1016/j.chb.2016.01.012.

Yao-Ping Peng, M., Xu, Y., & Xu, C. (2023). Enhancing students’ English language learning via M-learning: Integrating technology acceptance model and S-O-R model. Heliyon, 9(2), 13302. doi:10.1016/j.heliyon.2023.e13302.

Gomez, F. C., Trespalacios, J., Hsu, Y. C., & Yang, D. (2022). Exploring Teachers’ Technology Integration Self-Efficacy through the 2017 ISTE Standards. TechTrends, 66(2), 159–171. doi:10.1007/s11528-021-00639-z.

Tandon, A., Jabeen, F., Talwar, S., Sakashita, M., & Dhir, A. (2021). Facilitators and inhibitors of organic food buying behavior. Food Quality and Preference, 88, 104077. doi:10.1016/j.foodqual.2020.104077.

Yang, S., Zhou, S., & Cheng, X. (2019). Why do college students continue to use mobile learning? Learning involvement and self-determination theory. British Journal of Educational Technology, 50(2), 626–637. doi:10.1111/bjet.12634.

Shen, Y., & Cui, W. (2024). Perceived support and AI literacy: the mediating role of psychological needs satisfaction. Frontiers in Psychology, 15. doi:10.3389/fpsyg.2024.1415248.

Tsai, H.-T., & Bagozzi, R. P. (2014). Contribution Behavior in Virtual Communities: Cognitive, Emotional, and Social Influences. MIS Quarterly, 38(1), 143–163. doi:10.25300/misq/2014/38.1.07.

Kühn, S. W., & Petzer, D. J. (2018). Fostering Purchase Intentions Toward Online Retailer Websites in an Emerging Market: An S-O-R Perspective. Journal of Internet Commerce, 17(3), 255–282. doi:10.1080/15332861.2018.1463799.

Kühne, R., & Peter, J. (2023). Anthropomorphism in human–robot interactions: a multidimensional conceptualization. Communication Theory, 33(1), 42–52. doi:10.1093/ct/qtac020.

Xia, Y., Deng, Y., Tao, X., Zhang, S., & Wang, C. (2024). Digital art exhibitions and psychological well-being in Chinese Generation Z: An analysis based on the S-O-R framework. Humanities and Social Sciences Communications, 11(1), 1-15. doi:10.1057/s41599-024-02718-x.

Eom, S. B., & Ashill, N. (2016). The Determinants of Students’ Perceived Learning Outcomes and Satisfaction in University Online Education: An Update*. Decision Sciences Journal of Innovative Education, 14(2), 185–215. doi:10.1111/dsji.12097.

Nokelainen, P. (2006). An empirical assessment of pedagogical usability criteria for digital learning material with elementary school students. Educational Technology and Society, 9(2), 178–197.

Zhao, Y., Wang, A., & Sun, Y. (2020). Technological environment, virtual experience, and MOOC continuance: A stimulus–organism–response perspective. Computers & Education, 144, 103721. doi:10.1016/j.compedu.2019.103721.

Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers and Education, 55(3), 1171–1182. doi:10.1016/j.compedu.2010.05.014.

Sprenger, D. A., & Schwaninger, A. (2021). Technology acceptance of four digital learning technologies (classroom response system, classroom chat, e-lectures, and mobile virtual reality) after three months’ usage. International Journal of Educational Technology in Higher Education, 18(1), 8. doi:10.1186/s41239-021-00243-4.

Gunesekera, A. I., Bao, Y., & Kibelloh, M. (2019). The role of usability on e-learning user interactions and satisfaction: a literature review. Journal of Systems and Information Technology, 21(3), 368–394. doi:10.1108/JSIT-02-2019-0024.

Hoehle, H., Aljafari, R., & Venkatesh, V. (2016). Leveraging Microsoft’s mobile usability guidelines: Conceptualizing and developing scales for mobile application usability. International Journal of Human Computer Studies, 89, 35–53. doi:10.1016/j.ijhcs.2016.02.001.

Duong, C. D. (2023). Applying the stimulus-organism-response theory to investigate determinants of students’ social entrepreneurship: moderation role of perceived university support. Social Enterprise Journal, 19(2), 167–192. doi:10.1108/SEJ-10-2022-0091.

Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. doi:10.1016/j.techsoc.2020.101280.

Barari, M., Ross, M., & Surachartkumtonkun, J. (2020). Negative and positive customer shopping experience in an online context. Journal of Retailing and Consumer Services, 53, 101985. doi:10.1016/j.jretconser.2019.101985.

Pal, D., & Vanijja, V. (2020). Perceived usability evaluation of Microsoft Teams as an online learning platform during COVID-19 using system usability scale and technology acceptance model in India. Children and Youth Services Review, 119, 105535. doi:10.1016/j.childyouth.2020.105535.

De Cicco, R., e Silva, S. C., & Alparone, F. R. (2020). Millennials’ attitude toward chatbots: an experimental study in a social relationship perspective. International Journal of Retail and Distribution Management, 48(11), 1213–1233. doi:10.1108/IJRDM-12-2019-0406.

Mih, V., & Mih, C. (2013). Perceived autonomy-supportive teaching, academic self-perceptions and engagement in learning: Toward a process model of academic achievement. Brain & Behavior. An Interdisciplinary Journal, 4, 289-313.

Leisterer, S., & Paschold, E. (2022). Increased perceived autonomy-supportive teaching in physical education classes changes students’ positive emotional perception compared to controlling teaching. Frontiers in Psychology, 13. doi:10.3389/fpsyg.2022.1015362.

Gutiérrez, M., & Tomás, J. M. (2019). The role of perceived autonomy support in predicting university students’ academic success mediated by academic self-efficacy and school engagement. Educational Psychology, 39(6), 729–748. doi:10.1080/01443410.2019.1566519.

Perse, E. M. (1998). Implications of cognitive and affective involvement for channel changing. Journal of Communication, 48(3), 49–68. doi:10.1111/j.1460-2466.1998.tb02759.x.

Wang, M., & Kang, M. (2006). Cybergogy for Engaged Learning: A Framework for Creating Learner Engagement through Information and Communication Technology. Engaged Learning with Emerging Technologies, Springer, Dordrecht, Netherlands. doi:10.1007/1-4020-3669-8_11.

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268. doi:10.1207/S15327965PLI1104_01.

Reeve, J. (2013). How students create motivationally supportive learning environments for themselves: The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579–595. doi:10.1037/a0032690.

Achuthan, K., Nair, V. K., Kowalski, R., Ramanathan, S., & Raman, R. (2023). Cyberbullying research—Alignment to sustainable development and impact of COVID-19: Bibliometrics and science mapping analysis. Computers in Human Behavior, 140, 107566. doi:10.1016/j.chb.2022.107566.

Howard, J. L., Gagné, M., & Bureau, J. S. (2017). Testing a continuum structure of self-determined motivation: A meta-analysis. Psychological Bulletin, 143(12), 1346–1377. doi:10.1037/bul0000125.

Mehrabian, A. (1974). An approach to environmental psychology. MIT Press, Cambridge, United States.

Sakiz, G. (2012). Perceived instructor affective support in relation to academic emotions and motivation in college. Educational Psychology, 32(1), 63–79. doi:10.1080/01443410.2011.625611.

Yerdelen, S. (2013). Multilevel investigations of students’ cognitive and affective learning outcomes and their relationships with perceived classroom learning environment and teacher effectiveness PhD Thesis, Ankara, Turkey.

Sadoughi, M., & Hejazi, S. Y. (2021). Teacher support and academic engagement among EFL learners: The role of positive academic emotions. Studies in Educational Evaluation, 70, 101060. doi:10.1016/j.stueduc.2021.101060.

Liu, R. De, Zhen, R., Ding, Y., Liu, Y., Wang, J., Jiang, R., & Xu, L. (2018). Teacher support and math engagement: roles of academic self-efficacy and positive emotions. Educational Psychology, 38(1), 3–16. doi:10.1080/01443410.2017.1359238.

Russo, T. C., & Benson, S. (2005, January). Learning with invisible others: Perceptions of online presence and their relationship to cognitive and affective learning. International Forum of Educational Technology and Society.

Collie, R. J., & Martin, A. J. (2024). Students’ perceived competence across academic and social-emotional domains: Unique roles in relation to autonomy-supportive teaching, academic engagement, and well-being. Learning and Individual Differences, 116, 102563. doi:10.1016/j.lindif.2024.102563.

Bakx, A. W. E. A., Van Der Sanden, J. M. M., Sijtsma, K., Croon, M. A., & Vermetten, Y. J. M. (2006). The role of students’ personality characteristics, self-perceived competence and learning conceptions in the acquisition and development of social communicative competence: A longitudinal study. Higher Education, 51(1), 71–104. doi:10.1007/s10734-004-6377-6.

Merino-Soto, C., Fernández-Arata, M., Fuentes-Balderrama, J., Chans, G. M., & Toledano-Toledano, F. (2022). Research Perceived Competency Scale: A New Psychometric Adaptation for University Students’ Research Learning. Sustainability, 14(19), 12036. doi:10.3390/su141912036.

Li, W., Lee, A. M., & Solmon, M. A. (2005). Relationships among dispositional ability conceptions, intrinsic motivation, perceived competence, experience, persistence, and performance. Journal of Teaching in Physical Education, 24(1), 51–65. doi:10.1123/jtpe.24.1.51.

Wood, D. R. (2016). The impact of students’ perceived relatedness and competence upon their motivated engagement with learning activities: a self-determination theory perspective. PhD Thesis, University of Birmingham, Birmingham, United Kingdom.

Furrer, C., & Skinner, E. (2003). Sense of relatedness as a factor in children’s academic engagement and performance. Journal of Educational Psychology, 95(1), 148–162. doi:10.1037/0022-0663.95.1.148.

Hartnett, M. (2015). Influences that undermine learners’ perceptions of autonomy, competence and relatedness in an online context. Australasian Journal of Educational Technology, 31(1), 86–99. doi:10.14742/ajet.1526.

Ryan, R. M., & Powelson, C. L. (1991). Autonomy and relatedness as fundamental to motivation and education. Journal of Experimental Education, 60(1), 49–66. doi:10.1080/00220973.1991.10806579.

Sakiz, G., Pape, S. J., & Hoy, A. W. (2012). Does perceived teacher affective support matter for middle school students in mathematics classrooms? Journal of School Psychology, 50(2), 235–255. doi:10.1016/j.jsp.2011.10.005.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008.

Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology–Organisation–Environment (TOE) Framework. Buildings, 12(2), 90. doi:10.3390/buildings12020090.

Sánchez-Prieto, J. C., Cruz-Benito, J., Therón, R., & García-Peñalvo, F. (2020). Assessed by Machines: Development of a TAM-Based Tool to Measure AI-based Assessment Acceptance Among Students. International Journal of Interactive Multimedia and Artificial Intelligence, 6(4), 80. doi:10.9781/ijimai.2020.11.009.

Grover, P., Kar, A. K., Janssen, M., & Ilavarasan, P. V. (2019). Perceived usefulness, ease of use and user acceptance of blockchain technology for digital transactions–insights from user-generated content on Twitter. Enterprise Information Systems, 13(6), 771–800. doi:10.1080/17517575.2019.1599446.

Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers and Education, 104, 18–33. doi:10.1016/j.compedu.2016.10.001.

Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. doi:10.2307/30036540.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. doi:10.1111/j.1540-5915.2008.00192.x.

Madichie, N. O. (2009). Consumer Behavior: Buying, Having, and Being (8th ed.). Management Decision, 47(5), 845–848. doi:10.1108/00251740910960169.

Ajzen, I. (2011). The theory of planned behaviour: Reactions and reflections. Psychology and Health, 26(9), 1113–1127. doi:10.1080/08870446.2011.613995.

Eagly, A. H. (1993). The psychology of attitudes. Thomson Wadsworth, Stamford, United States.

Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2001). Atmospheric qualities of online retailing. Journal of Business Research, 54(2), 177–184. doi:10.1016/s0148-2963(99)00087-9.

Hanifah, U., Binti Adam, Z., Faizin, M., Miftakhul Jannah, I., & Hanafi, Y. (2024). Accelerating the digitalisation of learning post-COVID-19 era to improve the pedagogical competence of pre-service Arabic teachers. Cogent Education, 11(1), 2413241. doi:10.1080/2331186X.2024.2413241

Wang, J., Tigelaar, D. E. H., Zhou, T., & Admiraal, W. (2023). The effects of mobile technology usage on cognitive, affective, and behavioural learning outcomes in primary and secondary education: A systematic review with meta-analysis. Journal of Computer Assisted Learning, 39(2), 301–328. doi:10.1111/jcal.12759.

Desmet, P. (2018). Measuring Emotion: Development and Application of an Instrument to Measure Emotional Responses to Products. Funology 2. Human–Computer Interaction Series, Springer, Cham, Switzerland. doi:10.1007/978-3-319-68213-6_25.

Korol, T. (2021). Digital Teacher Feedback as a Translation Assessment Tool. Journal of Teaching English for Specific and Academic Purposes, 9(4), 575–586. doi:10.22190/JTESAP2104575K.

Hill, R. J., Fishbein, M., & Ajzen, I. (1977). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Contemporary Sociology, 6(2), 244. doi:10.2307/2065853.

Bell, E., Bryman, A., & Harley, B. (2022). Business Research Methods. Oxford University Press, Oxford, United Kingdom. doi:10.1093/hebz/9780198869443.001.0001.

Krasil’nikova, V. A., Buduk-Ool, L. K., & Aizman, R. I. (2008). Morphofunctional development of Tyvan and Russian schoolchildren. Human physiology, 34(1), 66-72. doi:10.1134/S0362119708010106.

Dlodlo, N., & Dhurup, M. (2013). Drivers of e-marketing adoption among small and medium enterprises (SMEs) and variations with age of business owners. Mediterranean Journal of Social Sciences, 4(14), 53–66. doi:10.5901/mjss.2013.v4n14p53.

Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2010) Multivariate Data Analysis. 7th Edition, Pearson, New York, United States.

Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial Intelligence (AI) Student Assistants in the Classroom: Designing Chatbots to Support Student Success. Information Systems Frontiers, 25(1), 161–182. doi:10.1007/s10796-022-10291-4.

Arghashi, V., & Yuksel, C. A. (2022). Interactivity, Inspiration, and Perceived Usefulness! How retailers’ AR-apps improve consumer engagement through flow. Journal of Retailing and Consumer Services, 64, 102756. doi:10.1016/j.jretconser.2021.102756.

Almulla, M. A. (2022). Using Digital Technologies for Testing Online Teaching Skills and Competencies during the COVID-19 Pandemic. Sustainability (Switzerland), 14(9), 5455. doi:10.3390/su14095455.

Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199–3226. doi:10.1108/IJCHM-04-2020-0259.

Martín-García, A. V., Martínez-Abad, F., & Reyes-González, D. (2019). TAM and stages of adoption of blended learning in higher education by application of data mining techniques. British Journal of Educational Technology, 50(5), 2484–2500. doi:10.1111/bjet.12831.

Rafiq, F., Dogra, N., Adil, M., & Wu, J. Z. (2022). Examining Consumer’s Intention to Adopt AI-Chatbots in Tourism Using Partial Least Squares Structural Equation Modeling Method. Mathematics, 10(13), 2190. doi:10.3390/math10132190.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. doi:10.1108/EBR-11-2018-0203.

air, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. In Classroom Companion: Business. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-80519-7.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. doi:10.1007/BF02310555.

Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382–388. doi:10.1177/002224378101800313.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi:10.1007/s11747-014-0403-8.

Cohen, J. (1990). Statistical power analysis for the behavioral sciences. Computers, Environment and Urban Systems, 14(1), 71. doi:10.1016/0198-9715(90)90050-4.

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. New Challenges to International Marketing, 277–319, Emerald Group Publishing Limited, Leeds, United Kingdom. doi:10.1108/S1474-7979(2009)0000020014.

Hayes, A. F., & Coutts, J. J. (2020). Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Communication Methods and Measures, 14(1), 1–24. doi:10.1080/19312458.2020.1718629.

Stensen, K., & Lydersen, S. (2022). Internal consistency: from alpha to omega? Tidsskrift for Den Norske Legeforening. doi:10.4045/tidsskr.22.0112.

Nasir, M., Adil, M., & Kumar, M. (2022). Phobic COVID-19 Disorder Scale: Development, Dimensionality, and Item-Structure Test. International Journal of Mental Health and Addiction, 20(5), 2718–2730. doi:10.1007/s11469-021-00544-9.

Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107. doi:10.1504/ijmda.2017.087624.

Son, C., Foshay, W. R. (2012). What does the Korean experience tell us about issues in the integration of advanced technologies into mathematics classrooms in developed countries? 12th International Congress on Mathematical Education, 8-15 July, 2012, COEX, Seoul, Korea.

Kim, Y. H., Kim, D. J., & Wachter, K. (2013). A study of mobile user engagement (MoEN): Engagement motivations, perceived value, satisfaction, and continued engagement intention. Decision Support Systems, 56(1), 361–370. doi:10.1016/j.dss.2013.07.002.

Dirin, A., Laine, T. H., & Nieminen, M. (2017). Sustainable usage through emotional engagement: a user experience analysis of an adaptive driving school application. Cognition, Technology and Work, 19(2–3), 303–313. doi:10.1007/s10111-017-0406-6.

Vlachogianni, P., & Tselios, N. (2023). Perceived Usability Evaluation of Educational Technology Using the Post-Study System Usability Questionnaire (PSSUQ): A Systematic Review. Sustainability (Switzerland), 15(17), 12954. doi:10.3390/su151712954.

Abdelmawgoud, S. (2022). Using Gamification to Design and Develop an E learning Environment to Prepare Students for Reflective Writing. PhD Thesis, UNSW Sydney, Sydney, Australia. doi:10.26190/unsworks/24257

Reeve, J. (2012). A Self-determination Theory Perspective on Student Engagement. Handbook of Research on Student Engagement, Springer, Boston, United States. doi:10.1007/978-1-4614-2018-7_7.

Bandura, A. (1993). Perceived Self-Efficacy in Cognitive Development and Functioning. Educational Psychologist, 28(2), 117–148. doi:10.1207/s15326985ep2802_3.

van Loon, A. M., Ros, A., & Martens, R. (2012). Motivated learning with digital learning tasks: What about autonomy and structure? Educational Technology Research and Development, 60(6), 1015–1032. doi:10.1007/s11423-012-9267-0.

Shen, H., Ye, X., Zhang, J., & Huang, D. (2024). Investigating the role of perceived emotional support in predicting learners’ well-being and engagement mediated by motivation from a self-determination theory framework. Learning and Motivation, 86, 101968. doi:10.1016/j.lmot.2024.101968.

Ryan, R. M., & Deci, E. L. (2016). Facilitating and hindering motivation, learning, and well-being in schools: Research and observations from self-determination theory. Handbook of motivation at school. Routledge, Milton Park, United States.

Liu, X. xian, Gong, S. Y., Zhang, H. po, Yu, Q. lei, & Zhou, Z. Jin. (2021). Perceived teacher support and creative self-efficacy: The mediating roles of autonomous motivation and achievement emotions in Chinese junior high school students. Thinking Skills and Creativity, 39, 100752. doi:10.1016/j.tsc.2020.100752.

Xu, X., Wu, Z., & Wei, D. (2023). The relationship between perceived teacher support and student engagement among higher vocational students: A moderated mediation model. Frontiers in Psychology, 14. doi:10.3389/fpsyg.2023.1116932.

Guo, Q., Samsudin, S., Yang, X., Gao, J., Ramlan, M. A., Abdullah, B., & Farizan, N. H. (2023). Relationship between Perceived Teacher Support and Student Engagement in Physical Education: A Systematic Review. Sustainability (Switzerland), 15(7), 6039. doi:10.3390/su15076039.

Mercer, S. H., Nellis, L. M., Martínez, R. S., & Kirk, M. (2011). Supporting the students most in need: Academic self-efficacy and perceived teacher support in relation to within-year academic growth. Journal of School Psychology, 49(3), 323–338. doi:10.1016/j.jsp.2011.03.006.

Kilipamwambu, S. T. (2021). Teachers’ Perceived Difference Between Content and Competence Based Curricula in Secondary School: A Case of Dar es Salaam Region. Master Thesis, The Open University of Tanzania, Dar es Salaam, Tanzania.

Wiese, S. (2023). The perceived roles and competencies for distance educators employed by a private higher education institution. Master Thesis, Stellenbosch University, Stellenbosch, South Africa.

Ryan, R. M., & Deci, E. L. (2017). Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness. Guilford Press, London, United Kingdom. doi:10.1521/978.14625/28806.

Brandon-Lai, S. A., Funk, D. C., & Jordan, J. S. (2015). The stage-based development of behavioral regulation within the context of physically active leisure. Journal of Leisure Research, 47(4), 401–424. doi:10.1080/00222216.2015.11950368.

Manrai, R., Goel, U., & Yadav, P. D. (2021). Factors affecting adoption of digital payments by semi-rural Indian women: extension of UTAUT-2 with self-determination theory and perceived credibility. Aslib Journal of Information Management, 73(6), 814–838. doi:10.1108/AJIM-12-2020-0396.

Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Information & Management, 42(2), 317–327. doi:10.1016/j.im.2003.12.013.

Bereczki, E. O., & Kárpáti, A. (2021). Technology-enhanced creativity: A multiple case study of digital technology-integration expert teachers’ beliefs and practices. Thinking Skills and Creativity, 39, 100791. doi:10.1016/j.tsc.2021.100791.

Baki, R., Birgoren, B., & Aktepe, A. (2018). A meta-analysis of factors affecting perceived usefulness and perceived ease of use in the adoption of E-Learning systems. Turkish Online Journal of Distance Education, 19(4), 4–42. doi:10.17718/tojde.471649.

Arpaci, I., & Basol, G. (2020). The impact of preservice teachers’ cognitive and technological perceptions on their continuous intention to use flipped classroom. Education and Information Technologies, 25(5), 3503–3514. doi:10.1007/s10639-020-10104-8.

Tao, D., Shao, F., Wang, H., Yan, M., & Qu, X. (2020). Integrating usability and social cognitive theories with the technology acceptance model to understand young users’ acceptance of a health information portal. Health Informatics Journal, 26(2), 1347–1362. doi:10.1177/1460458219879337.

Aggarwal, A., & Rahul, M. (2017). Impact of perceived usability and perceived information quality on Indian consumer purchase intentions in online shopping: implication of TAM and S-O-R theory. International Journal of Technology Transfer and Commercialisation, 15(2), 160. doi:10.1504/ijttc.2017.087683.

Jeong, S. H., & Chung, J. Y. (2022). Integrated technology acceptance model (TAM) of sports team smartphone application (STSA) in the stimulus organism response (SOR) framework. Journal of Physical Education and Sport, 22(9), 2152–2161. doi:10.7752/jpes.2022.09275.

Willsey, P. J. (1989). A study of the effectiveness of the direct instruction of thinking skills on science and social studies achievement and on cognitive skills application. PhD Thesis, University of Colorado at Denver, Denver, United States.

Block, J. H. (1970). The effects of various levels of performance on selected cognitive, affective, and time variables. PhD Thesis, The University of Chicago, Chicago, United States.

Van Beek, J. A., de Jong, F. P. C. M., Wubbels, T., & Minnaert, A. E. M. G. (2014). Measuring teacher regulating activities concerning student learning in secondary education classrooms: Reliability and validity of student perceptions. Studies in Educational Evaluation, 43, 206–213. doi:10.1016/j.stueduc.2014.07.001.

Ibrahim, A., Clark, K., Reese, M. J., & Shingles, R. (2020). The effects of a teaching development institute for early career researchers on their intended teaching strategies, course design, beliefs about instructors’ and students’ knowledge, and instructional self-efficacy: The case of the Teaching Institute at Johns Hopkins University. Studies in Educational Evaluation, 64, 100836. doi:10.1016/j.stueduc.2020.100836.

Zimmermann, F., Melle, I., & Huwer, J. (2021). Developing Prospective Chemistry Teachers’ TPACK-A Comparison between Students of Two Different Universities and Expertise Levels Regarding Their TPACK Self-Efficacy, Attitude, and Lesson Planning Competence. Journal of Chemical Education, 98(6), 1863–1874. doi:10.1021/acs.jchemed.0c01296.

Paiwithayasiritham, C., Mingsiritham, K., Chanyawudhiwan, G., Amatmontree, S., & Iamsa-ard, A. (2024). Self-Perception About Digital Skills of Pre-Service Teachers in a Thailand University Context. Journal of Education and Learning, 14(1), 177. doi:10.5539/jel.v14n1p177.

Norhagen, S. L., Krumsvik, R. J., & Røkenes, F. M. (2024). Developing professional digital competence in Norwegian teacher education: a scoping review. Frontiers in Education, 9. doi:10.3389/feduc.2024.1363529.

Carpenter, J. P., Rosenberg, J. M., Kessler, A., Romero-Hall, E., & Fischer, C. (2024). The importance of context in teacher educators’ professional digital competence. Teachers and Teaching, 30(4), 400–416. doi:10.1080/13540602.2024.2320155.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-04

Refbacks

  • There are currently no refbacks.