Improving the Reliability of Biometric Authentication Processes Using a Model for Reducing Data Drift

Vladimir Zh. Kuklin, Naur Z. Ivanov, Alexander N. Muranov, Islam A. Alexandrov, Elena Yu. Linskaya

Abstract


Modern complexes providing biometric identification face several problems, such as information drift caused by the variability of facial patterns, voice timbres, and current states. Information drift can characteristically exhibit short-term (subjects' states have changed) or long-term changes. Simultaneously, the developed trusted systems should not have the properties of explainable AI to prevent the possibility of intruders, based on understanding the system behavior to perform actions to hack the system. This paper's objective is to improve the reliability of biometric authentication by increasing the informativity of the classified images by transforming the correlations between the information features using the Bayes-Minkowski measure. The paper puts forth the proposition of employing neuroimmune models that are founded upon the principles of both acquired and innate immunity, with an analogy to the natural immune system. In addition, the authors propose to analyze correlations between information features instead of the features themselves. To reduce the influence of data drift, the authors suggest using adaptive learning with a teacher and reinforcement, which helps to work even with small and unrepresentative data samples. The proposed algorithm demonstrates a high degree of accuracy, as evidenced by its equal error rate (EER), and is particularly well-suited to feature recognition tasks due to its adaptive model. The test results have shown that the proposed solutions increase the level of security of personal data and improve the reliability of biometric authentication against fraudulent actions of intruders, including approaches based on adversarial algorithms. The integration of the immune structure into the authentication system enables the algorithm to remain stable even when presented with a limited number of samples. The proposed algorithm mitigates the impact of data drift on the authentication outcome.

 

Doi: 10.28991/ESJ-2024-08-06-018

Full Text: PDF


Keywords


Biometric Identification; Information Drift; Trusted Artificial Intelligence (AI); Reliability of Identification Process; Immune Model.

References


Ryu, R., Yeom, S., Kim, S. H., & Herbert, D. (2021). Continuous Multimodal Biometric Authentication Schemes: A Systematic Review. IEEE Access, 9, 34541–34557. doi:10.1109/ACCESS.2021.3061589.

Ryu, R., Yeom, S., Herbert, D., & Dermoudy, J. (2023). The design and evaluation of adaptive biometric authentication systems: Current status, challenges and future direction. ICT Express, 9(6), 1183–1197. doi:10.1016/j.icte.2023.04.003.

Kurowski, M., Sroczyński, A., Bogdanis, G., & Czyżewski, A. (2021). An automated method for biometric handwritten signature authentication employing neural networks. Electronics (Switzerland), 10(4), 1–19. doi:10.3390/electronics10040456.

Zenisek, J., Holzinger, F., & Affenzeller, M. (2019). Machine learning based concept drift detection for predictive maintenance. Computers and Industrial Engineering, 137, 106031. doi:10.1016/j.cie.2019.106031.

Chen, K., Koh, Y. S., & Riddle, P. (2015). Tracking drift severity in data streams. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9457, pp. 96–108). Springer. doi:10.1007/978-3-319-26350-2_9.

Jain, A. K., Ross, A., & Prabhakar, S. (2004). An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20. doi:10.1109/TCSVT.2003.818349.

Bharadwaj, S., Amin, P., Ramya, D. J., & Parikh, S. (2024). Reliable human authentication using AI-based multibiometric image sensor fusion: Assessment of performance in information security. Measurement: Sensors, 33, 101140. doi:10.1016/j.measen.2024.101140.

Alshazly, H., Elmannai, H., Alkanhel, R. I., & Abdelnazeer, A. (2024). Advancing Biometric Identity Recognition with Optimized Deep Convolutional Neural Networks. Traitement Du Signal, 41(3), 1405–1418. doi:10.18280/ts.410329.

Gaber, T., Nicho, M., Ahmed, E., & Hamed, A. (2024). Robust thermal face recognition for law enforcement using optimized deep features with new rough sets-based optimizer. Journal of Information Security and Applications, 85, 103838. doi:10.1016/j.jisa.2024.103838.

Bleha, S., Slivinsky, C., & Hussien, B. (1990). Computer-Access Security Systems Using Keystroke Dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12), 1217–1222. doi:10.1109/34.62613.

Gunetti, D., Picardi, C., & Ruffo, G. (2005). Keystroke analysis of different languages: A case study. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 3646 LNCS, 133–144. Springer. doi:10.1007/11552253_13.

Crawford, H. (2010). Keystroke dynamics: Characteristics and opportunities. PST 2010: 2010 8th International Conference on Privacy, Security and Trust, 205–212. doi:10.1109/PST.2010.5593258.

Sumalatha, U., Prakasha, K. K., Prabhu, S., & Nayak, V. C. (2024). A Comprehensive Review of Unimodal and Multimodal Fingerprint Biometric Authentication Systems: Fusion, Attacks, and Template Protection. IEEE Access, 12, 64300–64334. doi:10.1109/ACCESS.2024.3395417.

Budžys, A., Kurasova, O., & Medvedev, V. (2024). Deep learning-based authentication for insider threat detection in critical infrastructure. Artificial Intelligence Review, 57(10), 272. doi:10.1007/s10462-024-10893-1.

Alexandrov, I. A., Kirichek, A. V., Kuklin, V. Z., & Chervyakov, L. M. (2023). Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks. HighTech and Innovation Journal, 4(1), 157–173. doi:10.28991/HIJ-2023-04-01-011.

Ding, S., Li, H., Su, C., Yu, J., & Jin, F. (2013). Evolutionary artificial neural networks: A review. Artificial Intelligence Review, 39(3), 251–260. doi:10.1007/s10462-011-9270-6.

Hajinazar, S., Thorn, A., Sandoval, E. D., Kharabadze, S., & Kolmogorov, A. N. (2021). MAISE: Construction of neural network interatomic models and evolutionary structure optimization. Computer Physics Communications, 259, 107679. doi:10.1016/j.cpc.2020.107679.

Alrawili, R., AlQahtani, A. A. S., & Khan, M. K. (2024). Comprehensive survey: Biometric user authentication application, evaluation, and discussion. Computers and Electrical Engineering, 119, 109485. doi:10.1016/j.compeleceng.2024.109485.

Wang, X., Wang, S., Liang, X., Zhao, D., Huang, J., Xu, X., Dai, B., & Miao, Q. (2024). Deep Reinforcement Learning: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 35(4), 5064–5078. doi:10.1109/TNNLS.2022.3207346.

Loufakis, M., Manis, O., Kioroglou, C., Kolokas, N., Ioannidis, D., Tzovaras, D., & Stankovski, M. (2024). Intelligent Model Management: Using Reinforcement Learning to Detect Data Drift and Retrain Industrial Machine Learning Systems. 26th International Conference on Digital Signal Processing and Its Applications, DSPA 2024, Moscow, Russian Federation. doi:10.1109/DSPA60853.2024.10510082.

Liew, S. H., Choo, Y. H., & Low, Y. F. (2019). Fuzzy-rough classification for brainprint authentication. Jordanian Journal of Computers and Information Technology, 5(2), 109–121. doi:10.5455/jjcit.71-1556703387.

Hosseinzadeh, D., & Krishnan, S. (2008). Gaussian mixture modeling of keystroke patterns for biometric applications. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 38(6), 816–826. doi:10.1109/TSMCC.2008.2001696.

Jeanjaitrong, N., & Bhattarakosol, P. (2013). Feasibility study on authentication based keystroke dynamic over touch-screen devices. 13th International Symposium on Communications and Information Technologies: Communication and Information Technology for New Life Style beyond the Cloud, ISCIT 2013, 238–242. doi:10.1109/ISCIT.2013.6645856.

Borodin, A. A., Kabulova, E. G., & Polozhentsev, K. A. (2016). Video detection of problems in the melting of consumable electrodes in a vacuum arc furnace. Steel in Translation, 46(5), 322–324. doi:10.3103/S0967091216050041.

Berto, R. (2014). The role of nature in coping with psycho-physiological stress: A literature review on restorativeness. Behavioral Sciences, 4(4), 394–409. doi:10.3390/bs4040394.

Quigley, K. S., Gianaros, P. J., Norman, G. J., Jennings, J. R., Berntson, G. G., & de Geus, E. J. C. (2024). Publication guidelines for human heart rate and heart rate variability studies in psychophysiology—Part 1: Physiological underpinnings and foundations of measurement. Psychophysiology, 61(9), 1–63. doi:10.1111/psyp.14604.

Bach, D. R., Castegnetti, G., Korn, C. W., Gerster, S., Melinscak, F., & Moser, T. (2018). Psychophysiological modeling: Current state and future directions. Psychophysiology, 55(11), 13214. doi:10.1111/psyp.13209.

Borgianni, Y., & MacCioni, L. (2020). Review of the use of neurophysiological and biometric measures in experimental design research. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 34(2), 248–285. doi:10.1017/S0890060420000062.

Ge, Y., Xu, X., Li, J., Lu, X., & Zhang, K. (2007). The effect of secondary task on driving performance, physiological indices and mental workload: A study based on simulated driving. International Conference on Transportation Engineering 2007, ICTE 2007, 38, 491–496. doi:10.1061/40932(246)81.

Rosen, O., & Thompson, W. K. (2009). A Bayesian regression model for multivariate functional data. Computational Statistics and Data Analysis, 53(11), 3773–3786. doi:10.1016/j.csda.2009.03.026.

Bookstein, F. L. (2019). Reflections on a Biometrics of Organismal Form. Biological Theory, 14(3), 177–211. doi:10.1007/s13752-019-00320-y.

Holsapple, C. W., Lee, A., & Otto, J. (1997). A machine learning method for multi-expert decision support. Annals of Operations Research, 75, 171–188. doi:10.1023/a:1018955328719.

Dasgupta, D. (2007). Advances in artificial immune systems. IEEE Computational Intelligence Magazine, 1(4), 40–49. doi:10.1109/mci.2006.329705.

Gehrlein, W. V. (1983). Condorcet’s paradox. Theory and Decision, 15(2), 161–197. doi:10.1007/BF00143070.

Revett, K., Tenreiro De Magalhães, S., & Santos, H. M. D. (2007). On the use of rough sets for user authentication via keystroke dynamics. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 4874 LNAI, 145–159. Springer. doi:10.1007/978-3-540-77002-2_13.

Hammad, M., Luo, G., & Wang, K. (2019). Cancelable biometric authentication system based on ECG. Multimedia Tools and Applications, 78(2), 1857–1887. doi:10.1007/s11042-018-6300-2.

Blasco, J., & Peris-Lopez, P. (2018). On the feasibility of low-cost wearable sensors for multi-modal biometric verification. Sensors (Switzerland), 18(9), 2782. doi:10.3390/s18092782.

Marteau, P. F. (2021). Random Partitioning Forest for Point-Wise and Collective Anomaly Detection - Application to Network Intrusion Detection. IEEE Transactions on Information Forensics and Security, 16, 2157–2172. doi:10.1109/TIFS.2021.3050605.

Yu, E., & Cho, S. (2004). Keystroke dynamics identity verification - Its problems and practical solutions. Computers and Security, 23(5), 428–440. doi:10.1016/j.cose.2004.02.004.

Killourhy, K. S., & Maxion, R. A. (2009). Comparing anomaly-detection algorithms for keystroke dynamics. Proceedings of the International Conference on Dependable Systems and Networks, 125–134. doi:10.1109/DSN.2009.5270346.

Tyapkin, V. N., Ishchuk, I. N., Kabulova, E. G., Semenov, M. E., & Meleshenko, P. А. (2016). Singular Spectral Analysis in Filtration of Noise-contaminated Signals of Pseudolite Navigation. Indian Journal of Science and Technology, 9(46), 107567. doi:10.17485/ijst/2016/v9i46/107567.

Muliono, Y., Ham, H., & Darmawan, D. (2018). Keystroke Dynamic Classification using Machine Learning for Password Authorization. Procedia Computer Science, 135, 564–569. doi:10.1016/j.procs.2018.08.209.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-018

Refbacks

  • There are currently no refbacks.