A Comparative Study of Material and Structural Configurations in Piezoelectric Energy Harvesting
Abstract
Doi: 10.28991/ESJ-2025-09-01-019
Full Text: PDF
Keywords
References
Wu, Y., Ma, Y., Zheng, H., & Ramakrishna, S. (2021). Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design, 211. doi:10.1016/j.matdes.2021.110164.
Ali, F., Raza, W., Li, X., Gul, H., & Kim, K. H. (2019). Piezoelectric energy harvesters for biomedical applications. Nano Energy, 57, 879–902. doi:10.1016/j.nanoen.2019.01.012.
Cheng, X., Xue, X., Ma, Y., Han, M., Zhang, W., Xu, Z., Zhang, H., & Zhang, H. (2016). Implantable and self-powered blood pressure monitoring based on a piezoelectric thin film: Simulated, in vitro and in vivo studies. Nano Energy, 22, 453–460. doi:10.1016/j.nanoen.2016.02.037.
Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics (Switzerland), 10(6), 1–53. doi:10.3390/electronics10060661.
Le Scornec, J., Guiffard, B., Seveno, R., Le Cam, V., & Ginestar, S. (2022). Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester. Renewable Energy, 184, 551–563. doi:10.1016/j.renene.2021.11.113.
Pertin, O., Guha, K., Jakšić, O., Jakšić, Z., & Iannacci, J. (2022). Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications. Micromachines, 13(9), 1399. doi:10.3390/mi13091399.
Yang, S., Cui, X., Guo, R., Zhang, Z., Sang, S., & Zhang, H. (2020). Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation. Beilstein Journal of Nanotechnology, 11, 1655–1662. doi:10.3762/BJNANO.11.148.
Liu, Y., Khanbareh, H., Halim, M. A., Feeney, A., Zhang, X., Heidari, H., & Ghannam, R. (2021). Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select, 2(8), 1459–1479. doi:10.1002/nano.202000242.
Gilson Dranka, G., Ferreira, P., & Vaz, A. I. F. (2022). Co-benefits between energy efficiency and demand-response on renewable-based energy systems. Renewable and Sustainable Energy Reviews, 169. doi:10.1016/j.rser.2022.112936.
Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., & Prabaharan, N. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews, 43, 100939. doi:10.1016/j.esr.2022.100939.
Santika, W. G., Anisuzzaman, M., Bahri, P. A., Shafiullah, G. M., Rupf, G. V., & Urmee, T. (2019). From goals to joules: A quantitative approach of interlinkages between energy and the Sustainable Development Goals. Energy Research and Social Science, 50, 201–214. doi:10.1016/j.erss.2018.11.016.
Seung Choi, H., Hur, S., Kumar, A., Song, H., Min Baik, J., Song, H. C., & Ryu, J. (2023). Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting. Applied Energy, 344, 121271. doi:10.1016/j.apenergy.2023.121271.
Anand, A., Ghose, D., Pradhan, S., Shabbiruddin, Bhoi, A.K. (2020). Optimal Selection of Electric Motor for E-Rickshaw Application Using MCDM Tools. Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 1040. Springer, Singapore. doi:10.1007/978-981-15-1451-7_52.
Saadon, S., & Sidek, O. (2011). A review of vibration-based MEMS piezoelectric energy harvesters. Energy Conversion and Management, 52(1), 500–504. doi:10.1016/j.enconman.2010.07.024.
Shindo, Y., & Narita, F. (2014). Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. International Journal of Mechanics and Materials in Design, 10(3), 305–311. doi:10.1007/s10999-014-9247-0.
Zhou, W., Penamalli, G. R., & Zuo, L. (2012). An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Materials and Structures, 21(1). doi:10.1088/0964-1726/21/1/015014.
Shin, Y. H., Choi, J., Kim, S. J., Kim, S., Maurya, D., Sung, T. H., Priya, S., Kang, C. Y., & Song, H. C. (2020). Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting. Nano Energy, 77. doi:10.1016/j.nanoen.2020.104986.
Krishna, A., & Palanivelu, S. (2023). Energy Harvesting from Vibrating Cantilever Structure of Different Base Materials using Piezoelectric Material: Theoretical and Experimental Approach. International Journal of Engineering, Transactions A: Basics, 36(1), 152–162. doi:10.5829/ije.2023.36.01a.17.
Karim H. Ali, Ahmed alhamadani, & Thaier J. Ntayeesh. (2024). Design and optimization of piezoelectric energy harvesting systems for enhanced performance in wireless sensor networks. International Journal of Science and Research Archive, 12(2), 568–576. doi:10.30574/ijsra.2024.12.2.1079.
Khan, A., Nawaz, M. Q., & Xu, L. (2024). Investigation and Numerical Simulation of Different Piezoelectric Bimorph Cantilever Designs for Energy Harvesting. International Journal of Electrical, Energy and Power System Engineering, 7(2), 85–99. doi:10.31258/ijeepse.7.2.85-99.
Megdich, A., Habibi, M., Laperrière, L., Li, Z., & Abdin, Y. (2024). Enhanced piezoelectric performance of PVDF/MWCNTs energy harvester through a 3D-printed multimodal auxetic structure for smart security systems. Materials Today Sustainability, 27, 100847. doi:10.1016/j.mtsust.2024.100847.
Al Miraj, A., Uddin, A. M., Gani, M. M., Sultana, T., & Shultana, S. (2024). Performance Analysis of Different Piezoelectric & Shim Materials on Bimorph Piezoelectric Energy Harvester. 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. doi:10.1109/I2CT61223.2024.10543375.
Xi, K., Hou, Y., Zheng, M., & Zhu, M. (2024). Elastic Polarization Configuration Coupled with Activity Rattling Space Boosts Energy Harvesting Performance of Lead-Free Piezoceramic. Advanced Functional Materials, 34(29), 2401487. doi:10.1002/adfm.202401487.
Machu, Z., Rubes, O., Sevecek, O., & Hadas, Z. (2021). Experimentally verified analytical models of piezoelectric cantilevers in different design configurations. Sensors, 21(20), 6759. doi:10.3390/s21206759.
He, Q., & Briscoe, J. (2024). Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications. ACS Applied Materials and Interfaces, 16(23), 29491–29520. doi:10.1021/acsami.3c17037.
Al Anazi, A. A., Candra, O., Chammam, A., Marhoon, H. A., Ali, I. R., Al-Kharsan, I. H., Alayi, R., Ebazadeh, Y., & Aladdin, M. (2023). Modeling and investigating electric power output maximization for piezoelectric energy harvester. AIP Advances, 13(5), 0141848. doi:10.1063/5.0141848.
Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009. doi:10.1088/0964-1726/18/2/025009.
Kim, M., Hoegen, M., Dugundji, J., & Wardle, B. L. (2010). Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Materials and Structures, 19(4), 045023. doi:10.1088/0964-1726/19/4/045023.
Li, M., Yu, D., Li, Y., Liu, X., & Dai, F. (2023). Integrated a nonlinear energy sink and a piezoelectric energy harvester using simply-supported bi-stable piezoelectric composite laminate. International Journal of Non-Linear Mechanics, 156. doi:10.1016/j.ijnonlinmec.2023.104464.
Tang, L., & Wang, J. (2017). Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mechanica, 228(11), 3997–4015. doi:10.1007/s00707-017-1910-8.
Syed, F. H., Thong, L. W., & Chan, Y. K. (2023). Analysis of Piezoelectric Energy Harvester with Different Substrate Materials and Configurations. Proceedings of the Multimedia University Engineering Conference (MECON 2022), 297–314. doi:10.2991/978-94-6463-082-4_27.
Ali, A., Shaukat, H., Bibi, S., Altabey, W. A., Noori, M., & Kouritem, S. A. (2023). Recent progress in energy harvesting systems for wearable technology. Energy Strategy Reviews, 49. doi:10.1016/j.esr.2023.101124.
Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65. doi:10.1016/j.nanoen.2019.104033.
Takahashi, H., Numamoto, Y., Tani, J., Matsuta, K., Qiu, J., & Tsurekawa, S. (2005). Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering. Japanese Journal of Applied Physics, 45(1L), L30. doi:10.1143/jjap.45.l30.
Hao, J., Li, W., Zhai, J., & Chen, H. (2019). Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering R: Reports, 135, 1–57. doi:10.1016/j.mser.2018.08.001.
Karaki, T., Yan, K., Miyamoto, T., & Adachi, M. (2007). Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder. Japanese Journal of Applied Physics, 46(2L), L97. doi:10.1143/jjap.46.l97.
Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, 16(3), R01. doi:10.1088/0964-1726/16/3/R01.
Lang, S. B., & Muensit, S. (2006). Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A, 85(2), 125–134. doi:10.1007/s00339-006-3688-8.
Fu, J., Hou, Y., Gao, X., Zheng, M., & Zhu, M. (2018). Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy, 52, 391–401. doi:10.1016/j.nanoen.2018.08.006.
Yang, L., Chi, S., Dong, S., Yuan, F., Wang, Z., Lei, J., Bao, L., Xiang, J., & Wang, J. (2020). Preparation and characterization of a novel piezoelectric nanogenerator based on soluble and meltable copolyimide for harvesting mechanical energy. Nano Energy, 67, 104220. doi:10.1016/j.nanoen.2019.104220.
Ghosh, S. K., Sinha, T. K., Mahanty, B., & Mandal, D. (2015). Self-poled Efficient Flexible “Ferroelectretic” Nanogenerator: A New Class of Piezoelectric Energy Harvester. Energy Technology, 3(12), 1190–1197. doi:10.1002/ente.201500167.
Syed, F. H., Thong, L. W., & Chan, Y. K. (2023). Evaluation of Substrate Materials and Mass Structure on Piezoelectric Cantilever Based Energy Harvester. Journal of Engineering Science and Technology, 18(6), 3140-3154.
Comsol (2025). MEMS Module Application Library: COMSOL Trademarks, Burlington, Canada. Available online: www.comsol.com/trademarks (accessed on January 2025).
Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306. doi:10.1063/1.5074184.
Jain, A., K. J., P., Sharma, A. Kr., Jain, A., & P.N, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55(7), 1589–1616. doi:10.1002/pen.24088.
Pei, J., Zhao, Z., Li, X., Liu, H., & Li, R. (2017). Effect of preparation techniques on structural and electrical properties of PZT/PVDF composites. Materials Express, 7(3), 180–188. doi:10.1166/mex.2017.1369.
DOI: 10.28991/ESJ-2025-09-01-019
Refbacks
- There are currently no refbacks.