A Comparative Study of Material and Structural Configurations in Piezoelectric Energy Harvesting

Fahmidul Huq Syed, Li Wah Thong, Mirza Farrukh Baig, Yee Kit Chan, M. N. Ervina Efzan

Abstract


The objective of this study is to evaluate the energy harvesting performance of piezoelectric cantilever beams using three configurations—unimorph, bimorph, and stack—with two piezoelectric materials, PZT-5A and PVDF. The methodology involved a detailed analysis of voltage, mechanical power, and electrical power outputs across varying frequencies and load resistances. Experiments were conducted at the resonance frequencies of each beam configuration and material to determine their energy conversion efficiency. The results reveal that PZT-5A significantly outperformed PVDF, with PZT-5A's voltage output being up to 94% higher at resonance. Among the configurations, the bimorph beam with PZT-5A demonstrated the highest energy conversion efficiency, achieving a 50% increase in electrical power output compared to the unimorph configuration and a 9% improvement over the stack configuration. Load resistance analysis also indicated optimal energy harvesting in the range of 104 Ω to 105Ω. The novelty of this research lies in its comprehensive comparison of different materials and configurations, highlighting the critical role of structural design and material properties in optimizing piezoelectric energy harvesters for low-power applications. These findings provide valuable insights for improving the efficiency of piezoelectric devices in various practical applications.

 

Doi: 10.28991/ESJ-2025-09-01-019

Full Text: PDF


Keywords


Piezoelectric Energy Harvesters; Vibration Energy; Cantilever Beam; PVDF; PZT-5A.

References


Wu, Y., Ma, Y., Zheng, H., & Ramakrishna, S. (2021). Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design, 211. doi:10.1016/j.matdes.2021.110164.

Ali, F., Raza, W., Li, X., Gul, H., & Kim, K. H. (2019). Piezoelectric energy harvesters for biomedical applications. Nano Energy, 57, 879–902. doi:10.1016/j.nanoen.2019.01.012.

Cheng, X., Xue, X., Ma, Y., Han, M., Zhang, W., Xu, Z., Zhang, H., & Zhang, H. (2016). Implantable and self-powered blood pressure monitoring based on a piezoelectric thin film: Simulated, in vitro and in vivo studies. Nano Energy, 22, 453–460. doi:10.1016/j.nanoen.2016.02.037.

Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics (Switzerland), 10(6), 1–53. doi:10.3390/electronics10060661.

Le Scornec, J., Guiffard, B., Seveno, R., Le Cam, V., & Ginestar, S. (2022). Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester. Renewable Energy, 184, 551–563. doi:10.1016/j.renene.2021.11.113.

Pertin, O., Guha, K., Jakšić, O., Jakšić, Z., & Iannacci, J. (2022). Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications. Micromachines, 13(9), 1399. doi:10.3390/mi13091399.

Yang, S., Cui, X., Guo, R., Zhang, Z., Sang, S., & Zhang, H. (2020). Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation. Beilstein Journal of Nanotechnology, 11, 1655–1662. doi:10.3762/BJNANO.11.148.

Liu, Y., Khanbareh, H., Halim, M. A., Feeney, A., Zhang, X., Heidari, H., & Ghannam, R. (2021). Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select, 2(8), 1459–1479. doi:10.1002/nano.202000242.

Gilson Dranka, G., Ferreira, P., & Vaz, A. I. F. (2022). Co-benefits between energy efficiency and demand-response on renewable-based energy systems. Renewable and Sustainable Energy Reviews, 169. doi:10.1016/j.rser.2022.112936.

Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., & Prabaharan, N. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews, 43, 100939. doi:10.1016/j.esr.2022.100939.

Santika, W. G., Anisuzzaman, M., Bahri, P. A., Shafiullah, G. M., Rupf, G. V., & Urmee, T. (2019). From goals to joules: A quantitative approach of interlinkages between energy and the Sustainable Development Goals. Energy Research and Social Science, 50, 201–214. doi:10.1016/j.erss.2018.11.016.

Seung Choi, H., Hur, S., Kumar, A., Song, H., Min Baik, J., Song, H. C., & Ryu, J. (2023). Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting. Applied Energy, 344, 121271. doi:10.1016/j.apenergy.2023.121271.

Anand, A., Ghose, D., Pradhan, S., Shabbiruddin, Bhoi, A.K. (2020). Optimal Selection of Electric Motor for E-Rickshaw Application Using MCDM Tools. Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 1040. Springer, Singapore. doi:10.1007/978-981-15-1451-7_52.

Saadon, S., & Sidek, O. (2011). A review of vibration-based MEMS piezoelectric energy harvesters. Energy Conversion and Management, 52(1), 500–504. doi:10.1016/j.enconman.2010.07.024.

Shindo, Y., & Narita, F. (2014). Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. International Journal of Mechanics and Materials in Design, 10(3), 305–311. doi:10.1007/s10999-014-9247-0.

Zhou, W., Penamalli, G. R., & Zuo, L. (2012). An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Materials and Structures, 21(1). doi:10.1088/0964-1726/21/1/015014.

Shin, Y. H., Choi, J., Kim, S. J., Kim, S., Maurya, D., Sung, T. H., Priya, S., Kang, C. Y., & Song, H. C. (2020). Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting. Nano Energy, 77. doi:10.1016/j.nanoen.2020.104986.

Krishna, A., & Palanivelu, S. (2023). Energy Harvesting from Vibrating Cantilever Structure of Different Base Materials using Piezoelectric Material: Theoretical and Experimental Approach. International Journal of Engineering, Transactions A: Basics, 36(1), 152–162. doi:10.5829/ije.2023.36.01a.17.

Karim H. Ali, Ahmed alhamadani, & Thaier J. Ntayeesh. (2024). Design and optimization of piezoelectric energy harvesting systems for enhanced performance in wireless sensor networks. International Journal of Science and Research Archive, 12(2), 568–576. doi:10.30574/ijsra.2024.12.2.1079.

Khan, A., Nawaz, M. Q., & Xu, L. (2024). Investigation and Numerical Simulation of Different Piezoelectric Bimorph Cantilever Designs for Energy Harvesting. International Journal of Electrical, Energy and Power System Engineering, 7(2), 85–99. doi:10.31258/ijeepse.7.2.85-99.

Megdich, A., Habibi, M., Laperrière, L., Li, Z., & Abdin, Y. (2024). Enhanced piezoelectric performance of PVDF/MWCNTs energy harvester through a 3D-printed multimodal auxetic structure for smart security systems. Materials Today Sustainability, 27, 100847. doi:10.1016/j.mtsust.2024.100847.

Al Miraj, A., Uddin, A. M., Gani, M. M., Sultana, T., & Shultana, S. (2024). Performance Analysis of Different Piezoelectric & Shim Materials on Bimorph Piezoelectric Energy Harvester. 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. doi:10.1109/I2CT61223.2024.10543375.

Xi, K., Hou, Y., Zheng, M., & Zhu, M. (2024). Elastic Polarization Configuration Coupled with Activity Rattling Space Boosts Energy Harvesting Performance of Lead-Free Piezoceramic. Advanced Functional Materials, 34(29), 2401487. doi:10.1002/adfm.202401487.

Machu, Z., Rubes, O., Sevecek, O., & Hadas, Z. (2021). Experimentally verified analytical models of piezoelectric cantilevers in different design configurations. Sensors, 21(20), 6759. doi:10.3390/s21206759.

He, Q., & Briscoe, J. (2024). Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications. ACS Applied Materials and Interfaces, 16(23), 29491–29520. doi:10.1021/acsami.3c17037.

Al Anazi, A. A., Candra, O., Chammam, A., Marhoon, H. A., Ali, I. R., Al-Kharsan, I. H., Alayi, R., Ebazadeh, Y., & Aladdin, M. (2023). Modeling and investigating electric power output maximization for piezoelectric energy harvester. AIP Advances, 13(5), 0141848. doi:10.1063/5.0141848.

Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009. doi:10.1088/0964-1726/18/2/025009.

Kim, M., Hoegen, M., Dugundji, J., & Wardle, B. L. (2010). Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Materials and Structures, 19(4), 045023. doi:10.1088/0964-1726/19/4/045023.

Li, M., Yu, D., Li, Y., Liu, X., & Dai, F. (2023). Integrated a nonlinear energy sink and a piezoelectric energy harvester using simply-supported bi-stable piezoelectric composite laminate. International Journal of Non-Linear Mechanics, 156. doi:10.1016/j.ijnonlinmec.2023.104464.

Tang, L., & Wang, J. (2017). Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mechanica, 228(11), 3997–4015. doi:10.1007/s00707-017-1910-8.

Syed, F. H., Thong, L. W., & Chan, Y. K. (2023). Analysis of Piezoelectric Energy Harvester with Different Substrate Materials and Configurations. Proceedings of the Multimedia University Engineering Conference (MECON 2022), 297–314. doi:10.2991/978-94-6463-082-4_27.

Ali, A., Shaukat, H., Bibi, S., Altabey, W. A., Noori, M., & Kouritem, S. A. (2023). Recent progress in energy harvesting systems for wearable technology. Energy Strategy Reviews, 49. doi:10.1016/j.esr.2023.101124.

Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65. doi:10.1016/j.nanoen.2019.104033.

Takahashi, H., Numamoto, Y., Tani, J., Matsuta, K., Qiu, J., & Tsurekawa, S. (2005). Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering. Japanese Journal of Applied Physics, 45(1L), L30. doi:10.1143/jjap.45.l30.

Hao, J., Li, W., Zhai, J., & Chen, H. (2019). Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering R: Reports, 135, 1–57. doi:10.1016/j.mser.2018.08.001.

Karaki, T., Yan, K., Miyamoto, T., & Adachi, M. (2007). Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder. Japanese Journal of Applied Physics, 46(2L), L97. doi:10.1143/jjap.46.l97.

Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, 16(3), R01. doi:10.1088/0964-1726/16/3/R01.

Lang, S. B., & Muensit, S. (2006). Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A, 85(2), 125–134. doi:10.1007/s00339-006-3688-8.

Fu, J., Hou, Y., Gao, X., Zheng, M., & Zhu, M. (2018). Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy, 52, 391–401. doi:10.1016/j.nanoen.2018.08.006.

Yang, L., Chi, S., Dong, S., Yuan, F., Wang, Z., Lei, J., Bao, L., Xiang, J., & Wang, J. (2020). Preparation and characterization of a novel piezoelectric nanogenerator based on soluble and meltable copolyimide for harvesting mechanical energy. Nano Energy, 67, 104220. doi:10.1016/j.nanoen.2019.104220.

Ghosh, S. K., Sinha, T. K., Mahanty, B., & Mandal, D. (2015). Self-poled Efficient Flexible “Ferroelectretic” Nanogenerator: A New Class of Piezoelectric Energy Harvester. Energy Technology, 3(12), 1190–1197. doi:10.1002/ente.201500167.

Syed, F. H., Thong, L. W., & Chan, Y. K. (2023). Evaluation of Substrate Materials and Mass Structure on Piezoelectric Cantilever Based Energy Harvester. Journal of Engineering Science and Technology, 18(6), 3140-3154.

Comsol (2025). MEMS Module Application Library: COMSOL Trademarks, Burlington, Canada. Available online: www.comsol.com/trademarks (accessed on January 2025).

Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306. doi:10.1063/1.5074184.

Jain, A., K. J., P., Sharma, A. Kr., Jain, A., & P.N, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55(7), 1589–1616. doi:10.1002/pen.24088.

Pei, J., Zhao, Z., Li, X., Liu, H., & Li, R. (2017). Effect of preparation techniques on structural and electrical properties of PZT/PVDF composites. Materials Express, 7(3), 180–188. doi:10.1166/mex.2017.1369.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-019

Refbacks

  • There are currently no refbacks.