The Assessment of the Green Development of the Tobacco Industry Using a Multicriteria Method

Giedrė Lapinskiene, Martynas Blazaitis, Dainora Gedvilaite, Neringa Slavinskaite

Abstract


The tobacco industry is heavily regulated due to the significant health implications associated with tobacco use. The industry also involves numerous stakeholders, including farmers, manufacturers, distributors, retailers, regulators, and consumers. The aim of this research is to select the most relevant environmental criteria for the green development of the tobacco industry. This article uses Analytical Hierarchy Process (AHP) methods to create a hierarchical structure of the criteria and subcriteria necessary for green business development, establishing the relative weights of these subcriteria to find the areas in which attention and resources are most urgently required. The assessment of the concordance of expert opinions shows a satisfactory level of agreement. The article advances a more comprehensive view towards the evaluation of green criteria that are significant for the whole industry, seeking to highlight the need to think holistically. According to the views of experts, the most significant sub-criteria for the green development of the tobacco industry are increasing energy efficiency; safeguarding against hazardous wastewater in the environment; reducing the content of hazardous materials used in products; improving air, land, and water quality where economic activity takes place; sustainable forest management; eco-design, especially for efficient material use, biodegradability, and recyclability; and collaboration with suppliers. The entire industry should collaborate in seeking global green development by gradually investing in the improvement of green criteria.

 

Doi: 10.28991/ESJ-2025-09-01-018

Full Text: PDF


Keywords


Tobacco Industry; Green Development; AHP; Criteria.

References


Reitsma, M. B., Kendrick, P. J., Ababneh, E., Abbafati, C., Abbasi-Kangevari, M., Abdoli, A., Abedi, A., Abhilash, E. S., Abila, D. B., Aboyans, V., Abu-Rmeileh, N. M., Adebayo, O. M., Advani, S. M., Aghaali, M., Ahinkorah, B. O., Ahmad, S., Ahmadi, K., Ahmed, H., Aji, B., … Gakidou, E. (2021). Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet, 397(10292), 2337–2360. doi:10.1016/s0140-6736(21)01169-7.

W.H.O. (2024). Tobacco use declines despite tobacco industry efforts to jeopardize progress. World Health Organization (WHO), Geneva, Switzerland. Available Online: https://www.who.int/news/item/16-01-2024-tobacco-use-declines-despite-tobacco-industry-efforts-to-jeopardize-progress (accessed on January 2025).

Zafeiridou, M., Hopkinson, N. S., & Voulvoulis, N. (2018). Cigarette Smoking: An Assessment of Tobacco’s Global Environmental Footprint Across Its Entire Supply Chain. Environmental Science & Technology, 52(15), 8087–8094. doi:10.1021/acs.est.8b01533.

Hendlin, Y. H., & Bialous, S. A. (2020). The environmental externalities of tobacco manufacturing: A review of tobacco industry reporting. Ambio, 49(1), 17–34. doi:10.1007/s13280-019-01148-3.

Shoukat, M. H., Selem, K. M., & Cao, D. (2024). How do corporate social responsibility initiatives enhance sustainability performance? Evidence from tobacco firms. Environment, Development and Sustainability. doi:10.1007/s10668-024-04477-w.

Nara, E. O. B., Gelain, C., Moraes, J. A. R., Benitez, L. B., Schaefer, J. L., & Baierle, I. C. (2019). Analysis of the sustainability reports from multinationals tobacco companies in southern Brazil. Journal of Cleaner Production, 232, 1093–1102. doi:10.1016/j.jclepro.2019.05.399.

Cao, G., Bao, Y., Wu, C., & Wang, Y. (2017). Analysis on efficiency optimization of tobacco leaf flue-curing process. Procedia Engineering, 205, 540–547. doi:10.1016/j.proeng.2017.10.413.

Zhang, Y., He, X., Liang, H., Zhao, J., Zhang, Y., Xu, C., & Shi, X. (2016). Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 23(6), 5442–5450. doi:10.1007/s11356-015-5673-2.

Houghton, F., Houghton, S., O’ Doherty, D., McInerney, D., & Duncan, B. (2018). ‘Greenwashing’ tobacco products through ecological and social/equity labelling: A potential threat to tobacco control. Tobacco Prevention & Cessation, 4. doi:10.18332/tpc/99674.

Houghton, F., Houghton, S., O’Doherty, D., McInerney, D., & Duncan, B. (2019). Greenwashing tobacco—attempts to eco-label a killer product. Journal of Environmental Studies and Sciences, 9(1), 82–85. doi:10.1007/s13412-018-0528-z.

Momas, C. (2023). Tobacco greenwashing in environmental, social and governance disclosures. Tobacco Prevention & Cessation, 9(Supplement), A18. doi:10.18332/tpc/162455.

Nogués, S., González-González, E., & Cordera, R. (2019). Planning regional sustainability: An index-based framework to assess spatial plans. Application to the region of Cantabria (Spain). Journal of Cleaner Production, 225, 510–523. doi:10.1016/j.jclepro.2019.03.328.

Wang, Q., Han, R., Huang, Q., Hao, J., Lv, N., Li, T., & Tang, B. (2018). Research on energy conservation and emissions reduction based on AHP-fuzzy synthetic evaluation model: A case study of tobacco enterprises. Journal of Cleaner Production, 201, 88–97. doi:10.1016/j.jclepro.2018.07.270.

Li, Z., Feng, Z., Zhang, Z., Sun, S., Chen, J., Gao, Y., Zhao, H., Lv, X., & Wu, Y. (2023). Analysis of energy consumption of tobacco drying process based on industrial big data. Drying Technology, 42(2), 307–317. doi:10.1080/07373937.2023.2288667.

Zare Derakhshan, J., Firouzi, S., & Kosari-Moghaddam, A. (2022). Energy audit of tobacco production agro-system based on different farm size levels in northern Iran. Environment, Development and Sustainability, 24(2), 2715–2735. doi:10.1007/s10668-021-01552-4.

Ben Jebli, M., & Boussaidi, R. (2024). Empirical evidence of emissions discourse related to food, beverage, and tobacco production in leading manufacturing nations. Environmental Science and Pollution Research, 31(16), 23968–23978. doi:10.1007/s11356-024-32690-7.

Kourgialas, N. N. (2021). A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects. Science of The Total Environment, 775, 145857. doi:10.1016/j.scitotenv.2021.145857.

Falloon, P., & Betts, R. (2010). Climate impacts on European agriculture and water management in the context of adaptation and mitigation-The importance of an integrated approach. Science of the Total Environment, 408(23), 5667–5687. doi:10.1016/j.scitotenv.2009.05.002.

Benavente, M. J., Caballero, M. J. A., Silvero, G., López-Coca, I., & Escobar, V. G. (2019). Cellulose Acetate Recovery from Cigarette Butts. Proceedings, 2(20), 1447. doi:10.3390/proceedings2201447.

Moroz, I., Scapolio, L. G. B., Cesarino, I., Leão, A. L., & Bonanomi, G. (2021). Toxicity of cigarette butts and possible recycling solutions—a literature review. Environmental Science and Pollution Research, 28(9), 10450–10473. doi:10.1007/s11356-020-11856-z.

Hoek, J., Gendall, P., Blank, M. L., Robertson, L., & Marsh, L. (2020). Butting out: An analysis of support for measures to address tobacco product waste. Tobacco Control, 29(2), 131–137. doi:10.1136/tobaccocontrol-2019-054956.

Ahmad, A., Ikram, A., Rehan, M. F., & Ahmad, A. (2022). Going green: Impact of green supply chain management practices on sustainability performance. Frontiers in Psychology, 13. doi:10.3389/fpsyg.2022.973676.

Issa, A., Khadem, A., Alzubi, A., & Berberoğlu, A. (2024). The Path from Green Innovation to Supply Chain Resilience: Do Structural and Dynamic Supply Chain Complexity Matter? Sustainability (Switzerland), 16(9), 3762. doi:10.3390/su16093762.

W.H.O. (2022). Tobacco: Poisoning our Planet. World Health Organization (WHO), Geneva, Switzerland. Available Online: https://www.who.int/publications/i/item/9789240051287 (accessed on January 2025).

W.H.O. (2024). WHO global report on trends in prevalence of tobacco use 2000–2025. World Health Organization (WHO), Geneva, Switzerland. Available Online: http://apps.who.int/bookorders (accessed on January 2025).

Baker, R. R., Massey, E. D., & Smith, G. (2004). An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food and Chemical Toxicology, 42, 53–83. doi:10.1016/j.fct.2004.01.001.

Evans-Reeves, K., Lauber, K., & Hiscock, R. (2021). The ‘filter fraud’ persists: the tobacco industry is still using filters to suggest lower health risks while destroying the environment. Tobacco Control, 31(e1), e80–e82. doi:10.1136/tobaccocontrol-2020-056245.

Torkashvand, J., Farzadkia, M., Sobhi, H. R., & Esrafili, A. (2020). Littered cigarette butt as a well-known hazardous waste: A comprehensive systematic review. Journal of Hazardous Materials, 383, 121242. doi:10.1016/j.jhazmat.2019.121242.

Proctor, R. N. (2012). Golden holocaust: Origins of the Cigarette Catastrophe and the Case for Abolition. University of California Press, Berkeley, United States. doi:10.1525/9780520950436.

Maulana, I. G., & Sunitiyoso, Y. (2024). Strategic Implementation of Big Data Automation for Wastage Management Reporting Using Analytical Hierarchy Process in The Tobacco Industry. Quantitative Economics and Management Studies, 5(3), 631–643. doi:10.35877/454ri.qems2623.

IPCC. (2023). Climate Change 2022 - Mitigation of Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. doi:10.1017/9781009157926.

European Parliament and the Council of the European Union. (2020). Regulation (EU) 2020/852 of the European Parliament and of the Council of 18 June 2020. Official Journal of the European Union, Brussels, Belgium. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0852&from=EN (accessed on January 2025).

MSCI. (2022). ESG and Climate Trends to Watch for 2023. Morgan Stanley Capital International: MSCI, Paris, France. Available online: https://www.msci.com/documents/1296102/35124068/ESG+and+Climate+Trends+to+Watch+for+2023.pdf (accessed on January 2025),

Abdallah, A. B., & Al-Ghwayeen, W. S. (2018). Green supply chain management and business performance. Business Process Management Journal, 26(2), 489–512. doi:10.1108/bpmj-03-2018-0091.

Eltayeb, T. K., Zailani, S., & Ramayah, T. (2011). Green supply chain initiatives among certified companies in Malaysia and environmental sustainability: Investigating the outcomes. Resources, Conservation and Recycling, 55(5), 495–506. doi:10.1016/j.resconrec.2010.09.003.

Longoni, A., Luzzini, D., & Guerci, M. (2018). Deploying Environmental Management across Functions: The Relationship Between Green Human Resource Management and Green Supply Chain Management. Journal of Business Ethics, 151(4), 1081–1095. doi:10.1007/s10551-016-3228-1.

Molina-Azorin, J. F., López-Gamero, M. D., Tarí, J. J., Pereira-Moliner, J., & Pertusa-Ortega, E. M. (2021). Environmental management, human resource management and green human resource management: A literature review. Administrative Sciences, 11(2), 48. doi:10.3390/ADMSCI11020048.

Tang, G., Chen, Y., Jiang, Y., Paillé, P., & Jia, J. (2018). Green human resource management practices: scale development and validity. Asia Pacific Journal of Human Resources, 56(1), 31–55. doi:10.1111/1744-7941.12147.

Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning. Priority Setting. Resource Allocation, McGraw-Hill, New York, United States.

Russo, R. D. F. S. M., & Camanho, R. (2015). Criteria in AHP: A systematic review of literature. Procedia Computer Science, 55, 1123–1132. doi:10.1016/j.procs.2015.07.081.

Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. doi:10.1016/0270-0255(87)90473-8.

Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101–1118. doi:10.1287/opre.2013.1197.

Goepel, K. D. (2013). Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises – a New AHP Excel Template with Multiple Inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, 1–10. doi:10.13033/isahp.y2013.047.

Goepel, K. (2018). Implementation of an Online software tool for the Analytic Hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3), 469–487. doi:10.13033/ijahp.v10i3.590.

Misran, M. F. R., Roslin, E. N., & Nur, N. M. (2020). AHP-consensus judgement on transitional decision-making: With a discussion on the relation towards open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 1–17. doi:10.3390/joitmc6030063.

Asadabadi, M. R., Chang, E., & Saberi, M. (2019). Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP). Cogent Engineering, 6(1). doi:10.1080/23311916.2019.1623153.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-018

Refbacks

  • There are currently no refbacks.