Real-Time Vehicle Type Detection and Counting for Emission Pollution Monitoring and Traffic Violation Identification
Downloads
Doi: 10.28991/ESJ-2025-09-02-023
Full Text: PDF
Downloads
Fazli, S. (2012). Neural Network based Vehicle Classification for Intelligent Traffic Control. International Journal of Software Engineering & Applications, 3(3), 17–22. doi:10.5121/ijsea.2012.3302.
Pattanashetty, V. B., Mane, V., Iyer, N. C., & Kore, S. (2022). Traffic Rules Violation Detection System. Information and Communication Technology for Competitive Strategies (ICTCS 2020), Lecture Notes in Networks and Systems, Springer, Singapore. doi:10.1007/978-981-16-0739-4_8.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. Computer Vision – ECCV 2016, 21–37. doi:10.1007/978-3-319-46448-0_2.
Lea, C., Vidal, R., Reiter, A., Hager, G. D., Hua, G., & Jégou, H. (2016). Computer Vision”ECCV 2016 Workshops. In Proceedings of the ECCV -2016, Amsterdam, Netherlands.
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.
Zhang, X., & Zhu, X. (2019). Vehicle Detection in the Aerial Infrared Images via an Improved Yolov3 Network. 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), 372–376. doi:10.1109/siprocess.2019.8868430.
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint, arXiv:2004.10934. doi:10.48550/arXiv.2004.10934.
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint, arXiv:1804.02767. doi:10.48550/arXiv.1804.02767.
Neamah, S. B., & Karim, A. A. (2023). Real-time Traffic Monitoring System Based on Deep Learning and YOLOv8. Aro-the Scientific Journal of Koya University, 11(2), 137–150. doi:10.14500/aro.11327.
Fernández Llorca, D., Hernández Martínez, A., & García Daza, I. (2021). Vision-based vehicle speed estimation: A survey. IET Intelligent Transport Systems, 15(8), 987–1005. doi:10.1049/itr2.12079.
Vidhi, R., & Shrivastava, P. (2018). A review of electric vehicle lifecycle emissions and policy recommendations to increase EV penetration in India. Energies, 11(3), 483. doi:10.3390/en11030483.
Wang, L., Zhang, F., Pilot, E., Yu, J., Nie, C., Holdaway, J., Yang, L., Li, Y., Wang, W., Vardoulakis, S., & Krafft, T. (2018). Taking action on air pollution control in the Beijing-Tianjin-Hebei (BTH) region: Progress, challenges and opportunities. International Journal of Environmental Research and Public Health, 15(2), 306. doi:10.3390/ijerph15020306.
Lin, C. J., Jeng, S. Y., & Lioa, H. W. (2021). A Real-Time Vehicle Counting, Speed Estimation, and Classification System Based on Virtual Detection Zone and YOLO. Mathematical Problems in Engineering, 2021, 1–10. doi:10.1155/2021/1577614.
Shah Junayed, M., Baharul Islam, M., Sadeghzadeh, A., & Aydin, T. (2021). Real-Time YOLO-based Heterogeneous Front Vehicles Detection. 2021 International Conference on Innovations in Intelligent Systems and Applications (INISTA), 1–7. doi:10.1109/inista52262.2021.9548650.
Azimjonov, J., & Özmen, A. (2021). A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways. Advanced Engineering Informatics, 50, 101393. doi:10.1016/j.aei.2021.101393.
Wu, T.-H., Wang, T.-W., & Liu, Y.-Q. (2021). Real-Time Vehicle and Distance Detection Based on Improved Yolo v5 Network. 3rd World Symposium on Artificial Intelligence (WSAI-2021), 24-28. doi:10.1109/wsai51899.2021.9486316.
Khazukov, K., Shepelev, V., Karpeta, T., Shabiev, S., Slobodin, I., Charbadze, I., & Alferova, I. (2020). Real-time monitoring of traffic parameters. Journal of Big Data, 7(1), 1–20. doi:10.1186/s40537-020-00358-x.
Huang, Y. Q., Zheng, J. C., Sun, S. D., Yang, C. F., & Liu, J. (2020). Optimized YOLOv3 algorithm and its application in traffic flow detections. Applied Sciences (Switzerland), 10(9), 3079. doi:10.3390/app10093079.
Franklin, R. J., & Mohana. (2020). Traffic Signal Violation Detection using Artificial Intelligence and Deep Learning. 2020 5th International Conference on Communication and Electronics Systems (ICCES), 839–844. doi:10.1109/icces48766.2020.9137873.
Jana, U., Karmakar, J. P. Das, Chakraborty, P., Huang, T., & Sharma, A. (2023). Automated Approach for Computer Vision-Based Vehicle Movement Classification at Traffic Intersections. Future Transportation, 3(2), 708–725. doi:10.3390/futuretransp3020041.
Kim, A.-R., Rhee, S.-Y., & Jang, H.-W. (2016). Lane Detection for Parking Violation Assessments. The International Journal of Fuzzy Logic and Intelligent Systems, 16(1), 13–20. doi:10.5391/ijfis.2016.16.1.13.
Haque, M. R., Islam, M. M., Alam, K. S., Iqbal, H., & Shaik, M. E. (2019). A Computer Vision based Lane Detection Approach. International Journal of Image, Graphics and Signal Processing, 11(3), 27–34. doi:10.5815/ijigsp.2019.03.04.
Patira, S. (2019). Over speed detection using Artificial Intelligence. M.Sc. Thesis, San Jose State University, California, United States. doi:10.31979/etd.u8qc-9d6e.
Wu, T., & Dong, Y. (2023). YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Applied Sciences (Switzerland), 13(24), 12977. doi:10.3390/app132412977.
Zhao, D., Zhao, L., Ma, R., & Zhao, X. (2021). Research on traffic sign detection algorithm based on improved YOLOv3. Journal of Physics: Conference Series, 2026(1), 226–232. doi:10.1088/1742-6596/2026/1/012050.
Li, J., & Wang, Z. (2019). Real-Time Traffic Sign Recognition Based on Efficient CNNs in the Wild. IEEE Transactions on Intelligent Transportation Systems, 20(3), 975–984. doi:10.1109/TITS.2018.2843815.
Hu, X., Xu, X., Xiao, Y., Chen, H., He, S., Qin, J., & Heng, P. A. (2019). SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems, 20(3), 1010–1019. doi:10.1109/TITS.2018.2838132.
Dong, Z., Wu, Y., Pei, M., & Jia, Y. (2015). Vehicle Type Classification Using a Semisupervised Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2247–2256. doi:10.1109/tits.2015.2402438.
Liu, C., Huynh, D. Q., Sun, Y., Reynolds, M., & Atkinson, S. (2021). A Vision-Based Pipeline for Vehicle Counting, Speed Estimation, and Classification. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7547–7560. doi:10.1109/TITS.2020.3004066.
Alqaraghuli, A., & Ata, O. (2022). Optimized YOLOv4 Algorithm for Car Detection in Traffic Flow. Turkish Journal of Science and Technology, 17(2), 395–403. doi:10.55525/tjst.1123195.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 1-74. doi:10.1186/s40537-021-00444-8.
Wang, M., & Ren, L. (2023). SSB-YOLO: A vehicle object detection algorithm based on improved YOLOv8. Research Square (Preprint), 1-12.doi:10.21203/rs.3.rs-3743453/v1.
Al Mudawi, N., Qureshi, A. M., Abdelhaq, M., Alshahrani, A., Alazeb, A., Alonazi, M., & Algarni, A. (2023). Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences. Sustainability, 15(19), 14597. doi:10.3390/su151914597.
Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path Aggregation Network for Instance Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8759-8768. doi:10.1109/cvpr.2018.00913.
Kawsar, S., Biswas, S., Noor, M., & Mamun, M. S. (2023). Investigating the applicability of COPERT 5.5 emission software in Bangladesh and developing countrywide vehicular emission inventories. Environmental Science: Atmospheres, 4(1), 57–72. doi:10.1039/d3ea00047h.
Gothane, D. S. (2021). A Practice for Object Detection Using YOLO Algorithm. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 7(2), 268–272. doi:10.32628/cseit217249.
Pham, S. V. H., & Nguyen, K. V. T. (2023). Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages. Applied Sciences (Switzerland), 13(22), 12445. doi:10.3390/app132212445.
Rahman, R., Bin Azad, Z., & Bakhtiar Hasan, M. (2022). Densely-Populated Traffic Detection Using YOLOv5 and Non-maximum Suppression Ensembling. Proceedings of the International Conference on Big Data, IoT, and Machine Learning. Lecture Notes on Data Engineering and Communications Technologies, Springer, Singapore. doi:10.1007/978-981-16-6636-0_43.
Sirisha, U., Praveen, S. P., Srinivasu, P. N., Barsocchi, P., & Bhoi, A. K. (2023). Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection. International Journal of Computational Intelligence Systems, 16(1), 126. doi:10.1007/s44196-023-00302-w.
Gupta, P., & Bagchi, A. (2024). Introduction to NumPy. Essentials of Python for Artificial Intelligence and Machine Learning. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham, Switzerland. doi:10.1007/978-3-031-43725-0_4.
Naveenkumar, M., & Vadivel, A. (2015). OpenCV for computer vision applications. Proceedings of national conference on big data and cloud computing (NCBDC'15), 20 March 2015, Trichy, India.
Rahman, S., Rony, J. H., Uddin, J., & Samad, M. A. (2023). Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography. Journal of Imaging, 9(10), 216. doi:10.3390/jimaging9100216.
Yadav, A., Chaturvedi, P. K., & Rani, S. (2024). Object Detection and Tracking using YOLOv8 and DeepSORT. Advancements in Communication and Systems, 81–90, SCRS Publication, Delhi, India. doi:10.56155/978-81-955020-7-3-7.
Song, H., Liang, H., Li, H., Dai, Z., & Yun, X. (2019). Vision-based vehicle detection and counting system using deep learning in highway scenes. European Transport Research Review, 11(1), 1-16. doi:10.1186/s12544-019-0390-4.
Tsanakas, N. (2019). Emission estimation based on traffic models and measurements. Linköping University, Norrköping, Sweden.
Biswas, K., Paul, N. K., Saha, D., Ahmed, T., & Mahmud, R. (2023). Detection of Traffic Rule Violations Using Machine Learning: An Analytical Review. Malaysian Journal of Science and Advanced Technology, 37–47. doi:10.56532/mjsat.v3i1.146.
Reddy, P. S., Nishwa, T., Reddy, R. S. K., Sadviq, C., & Rithvik, K. (2021). Traffic Rules Violation Detection using Machine Learning Techniques. 2021 6th International Conference on Communication and Electronics Systems (ICCES), 1264-1268. doi:10.1109/icces51350.2021.9488998.
Wydyanto, W., Nayan, N. M., Sulaiman, R., Dewi, D. A., & Kurniawan, T. B. (2024). A Hybrid Approach to Detect and Identify Text in Picture. Emerging Science Journal, 8(1), 218-238. doi:10.28991/ESJ-2024-08-01-016.
Shwaly, S. A., El-Ayaat, A., & Osman, R. (2024). Assessing Multifaceted Effects of Speed Humps and Bumps: Travel Time, Safety, and Environmental Considerations. Civil Engineering Journal, 10(7), 2177-2194. doi:10.28991/CEJ-2024-010-07-07.
Razak, S. F. A., Ismail, S. N. S., Bin, B. H. B., Yogarayan, S., Abdullah, M. F. A., & Kamis, N. H. (2024). Monitoring Physiological State of Drivers Using In-Vehicle Sensing of Non-Invasive Signal. Civil Engineering Journal, 10(4), 1221-1231. doi:10.28991/CEJ-2024-010-04-014.
Ravish, R., Rangaswamy, S., & Char, K. (2021). Intelligent traffic violation detection. 2nd Global Conference for Advancement in Technology (GCAT-2021), 1-7. doi:10.1109/GCAT52182.2021.9587520.
García-González, J., Molina-Cabello, M. A., Luque-Baena, R. M., Ortiz-de-Lazcano-Lobato, J. M., & López-Rubio, E. (2021). Road pollution estimation from vehicle tracking in surveillance videos by deep convolutional neural networks. Applied Soft Computing, 113, 107950. doi:10.1016/j.asoc.2021.107950.
Mč…dziel, M. (2023). Vehicle Emission Models and Traffic Simulators: A Review. Energies, 16(9), 3941. doi:10.3390/en16093941.
Tsanakas, N., Ekström, J., & Olstam, J. (2017). Emission estimation based on cross-sectional traffic data. 22nd International Transportation and Air Pollution Conference, 15-16 November, 2017, Zürich, Switzerland.
Guttikunda, S. (2008). Four Simple Equations for Vehicular Emissions Inventory. SIM-air Working Paper Series, 2.
Abou-Senna, H., Radwan, E., Westerlund, K., & Cooper, C. D. (2013). Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway. Journal of the Air & Waste Management Association, 63(7), 819-831. doi:10.1080/10962247.2013.795918.
Randall, S., Sivertsen, B., Ahammad, S. S., Cruz, N. D., & Dam, V. T. (2015). Emissions Inventory for Dhaka and Chittagong of Pollutants PM10, PM2.5, NOx, SOx, and CO. Norwegian Institute for Air Research Dhaka (NILU), Report No. OR 45/2014.
Farid, A., Hussain, F., Khan, K., Shahzad, M., Khan, U., & Mahmood, Z. (2023). A Fast and Accurate Real-Time Vehicle Detection Method Using Deep Learning for Unconstrained Environments. Applied Sciences (Switzerland), 13(5), 3059. doi:10.3390/app13053059.
Haque, A., Pulok, R. A., Rahman, M. M., Akter, S., Khan, N., & Haque, S. (2023). Recognition of Bangladeshi Sign Language (BdSL) Words using Deep Convolutional Neural Networks (DCNNs). Emerging Science Journal, 7(6), 2183–2201. doi:10.28991/ESJ-2023-07-06-019.
Islam, M. A., Rahman, M. M., Shohan, A. A., Pulok, R. A., Akter, S., & Ahmed, M. T. (2023). Deep Neural Network-Based Approach to Identify the Paddy Leaf Disease using ResNet50-V2. 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques, EASCT 2023, 1–6. doi:10.1109/EASCT59475.2023.10393586.
Talaat, F. M., & ZainEldin, H. (2023). An improved fire detection approach based on YOLO-v8 for smart cities. Neural Computing and Applications, 35(28), 20939–20954. doi:10.1007/s00521-023-08809-1.
Zhao, Z., Han, J., & Song, L. (2021). YOLO-Highway: An Improved Highway Center Marking Detection Model for Unmanned Aerial Vehicle Autonomous Flight. Mathematical Problems in Engineering, 1205153, 1–14. doi:10.1155/2021/1205153.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
