Invisible Scout: A Layer 2 Anomaly System for Detecting Rogue Access Point (RAP)
Abstract
Doi: 10.28991/ESJ-2025-09-01-016
Full Text: PDF
Keywords
References
Pahlavan, K., & Krishnamurthy, P. (2021). Evolution and Impact of Wi-Fi Technology and Applications: A Historical Perspective. International Journal of Wireless Information Networks, 28(1), 3–19. doi:10.1007/s10776-020-00501-8.
Reshef, E., & Cordeiro, C. (2022). Future Directions for Wi-Fi 8 and Beyond. IEEE Communications Magazine, 60(10), 50–55. doi:10.1109/MCOM.003.2200037.
Tian, L., Santi, S., Seferagić, A., Lan, J., & Famaey, J. (2021). Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research. Journal of Network and Computer Applications, 182. doi:10.1016/j.jnca.2021.103036.
Oughton, E. J., Lehr, W., Katsaros, K., Selinis, I., Bubley, D., & Kusuma, J. (2021). Revisiting Wireless Internet Connectivity: 5G vs Wi-Fi 6. Telecommunications Policy, 45(5), 102127. doi:10.1016/j.telpol.2021.102127.
Wu, C., Wang, B., Au, O. C., & Liu, K. J. R. (2022). Wi-Fi Can Do More: Toward Ubiquitous Wireless Sensing. IEEE Communications Standards Magazine, 6(2), 42–49. doi:10.1109/MCOMSTD.0001.2100111.
Chatzoglou, E., Kambourakis, G., & Kolias, C. (2022). How is your Wi-Fi connection today? DoS attacks on WPA3-SAE. Journal of Information Security and Applications, 64, 103058. doi:10.1016/j.jisa.2021.103058.
Karbasi, A. H., & Shahpasand, S. (2020). A post-quantum end-to-end encryption over smart contract-based blockchain for defeating man-in-the-middle and interception attacks. Peer-to-Peer Networking and Applications, 13(5), 1423–1441. doi:10.1007/s12083-020-00901-w.
Arisandia, D., Ahmad, N. M., & Kannan, S. (2022). A Detection Technique Using Dual Authentication Stages Framework for Rogue Access Point Identification. IOP Conference Series: Earth and Environmental Science, 1083(1). doi:10.1088/1755-1315/1083/1/012091.
Agyemang, J. O., Kponyo, J. J., Klogo, G. S., & Boateng, J. O. (2020). Lightweight rogue access point detection algorithm for WiFi-enabled Internet of Things(IoT) devices. Internet of Things (Netherlands), 11, 100200. doi:10.1016/j.iot.2020.100200.
Hu, J., Li, Y., Cui, Y., & Bu, L. (2021). A Technical Survey on Approaches for Detecting Rogue Access Points. Smart Innovation, Systems and Technologies, 190, 169–174. doi:10.1007/978-981-15-5697-5_20.
Hasan, Md. T., Hossain, Md. R., & Pathan, A.-S. K. (2021). Protecting Regular and Social Network Users in a Wireless Network by Detecting Rogue Access Point. Securing Social Networks in Cyberspace, 255–275, CRC Press, Boca Raton, United States. doi:10.1201/9781003134527-16.
Wofford, P. (2020). Rogue Access Points: The Threat to Public Wireless Networks. Master Thesis, Utica College, Utica, United States.
Khodadady, N. B. (2024). A Study on the Effectiveness of Offensive Wi-Fi Network Security Management. Ph.D. Thesis, Colorado Technical University, Colorado Springs, United States.
Lovinger, N., Gerlich, T., Martinasek, Z., & Malina, L. (2020). Detection of wireless fake access points. 2020 12th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), 113–118. doi:10.1109/icumt51630.2020.9222455.
Kim, M., Kwon, S., Elmazi, D., Lee, J. H., Barolli, L., & Yim, K. (2020). A Technical Survey on Methods for Detecting Rogue Access Points. Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2019, Advances in Intelligent Systems and Computing, 994. Springer, Cham, Switzerland. doi:10.1007/978-3-030-22263-5_21.
Patel, K. C., & Patel, A. (2022). Taxonomy and Future Threat of Rogue Access Point for Wireless Network. Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development, INDIACom 2022, 679–688. doi:10.23919/INDIACom54597.2022.9763150.
Alyami, M., Alharbi, I., Zou, C., Solihin, Y., & Ackerman, K. (2022). WiFi-based IoT Devices Profiling Attack based on Eavesdropping of Encrypted WiFi Traffic. Proceedings - IEEE Consumer Communications and Networking Conference, CCNC, 385–392. doi:10.1109/CCNC49033.2022.9700674.
Satam, P., & Hariri, S. (2021). WIDS: An Anomaly Based Intrusion Detection System for Wi-Fi (IEEE 802.11) Protocol. IEEE Transactions on Network and Service Management, 18(1), 1077–1091. doi:10.1109/TNSM.2020.3036138.
Arisandi, D., Ahmad, N. M., & Kannan, S. (2021). The rogue access point identification: A model and classification review. Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1527–1537. doi:10.11591/ijeecs.v23.i3.pp1527-1537.
Coll, E. (2023). The OSI Layers and Protocol Stacks. Teracom Training Institute, Las Vegas, United States.
Jain, V., Laxmi, V., Gaur, M. S., & Mosbah, M. (2019). ETGuard: Detecting D2D attacks using wireless Evil Twins. Computers and Security, 83, 389–405. doi:10.1016/j.cose.2019.02.014.
Hsu, F. H., Hsu, Y. L., & Wang, C. S. (2019). A solution to detect the existence of a malicious rogue AP. Computer Communications, 142–143, 62–68. doi:10.1016/j.comcom.2019.03.013.
VanSickle, R., Abegaz, T., & Payne, B. (2019). Effectiveness of tools in identifying rogue access points on a wireless network. KSU Proceedings on Cybersecurity Education, Research and Practice, 5, 1-11.
Bodhe, A. S., Dhanrao, P., Sangle, A., & Jagdisha, N. (2020). Design secure WSN with advancement in finding rouge access point with soft computing tools. Advances in Parallel Computing, 37, 543–551. doi:10.3233/APC200200.
Jang, R., Kang, J., Mohaisen, A., & Nyang, D. (2020). Catch me if you can: Rogue access point detection using intentional channel interference. IEEE Transactions on Mobile Computing, 19(5), 1056–1071. doi:10.1109/TMC.2019.2903052.
Hsu, F. H., Wang, C. S., Ou, C. W., & Hsu, Y. L. (2020). A passive user-side solution for evil twin access point detection at public hotspots. International Journal of Communication Systems, 33(14), 1–16,. doi:10.1002/dac.4460.
Shrivastava, P., Jamal, M. S., & Kataoka, K. (2020). EvilScout: Detection and Mitigation of Evil Twin Attack in SDN Enabled WiFi. IEEE Transactions on Network and Service Management, 17(1), 89–102. doi:10.1109/TNSM.2020.2972774.
Lu, Q., Jiang, R., Ouyang, Y., Qu, H., & Zhang, J. (2020). BiRe: A client-side Bi-directional SYN reflection mechanism against multi-model evil twin attacks. Computers and Security, 88. doi:10.1016/j.cose.2019.101618.
Igarashi, K., Kato, H., & Sasase, I. (2021). Rogue Access Point Detection by Using ARP Failure under the MAC Address Duplication. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1469–1474. doi:10.1109/pimrc50174.2021.9569473.
Bello, N., & Kanu, O. (2023). Penetration Testing of Gsm Network Using Man-in-the-Middle Attack. JES. Journal of Engineering Sciences, 0(0), 0–0. doi:10.21608/jesaun.2023.226718.1249.
Liu, P., Yang, P., Song, W. Z., Yan, Y., & Li, X. Y. (2019). Real-time Identification of Rogue WiFi Connections Using Environment-Independent Physical Features. Proceedings - IEEE INFOCOM, 190–198. doi:10.1109/INFOCOM.2019.8737455.
Lu, Q., Qu, H., Ouyang, Y., & Zhang, J. (2019). SLFAT: Client-Side Evil Twin Detection Approach Based on Arrival Time of Special Length Frames. Security and Communication Networks, 2718741. doi:10.1155/2019/2718741.
Kitisriworapan, S., Jansang, A., & Phonphoem, A. (2020). Client-side rogue access-point detection using a simple walking strategy and round-trip time analysis. Eurasip Journal on Wireless Communications and Networking, 252. doi:10.1186/s13638-020-01864-5.
Sankhe, K., Jaisinghani, D., & Chowdhury, K. (2020). CSIscan: Learning CSI for Efficient Access Point Discovery in Dense WiFi Networks. IEEE 28th International Conference on Network Protocols (ICNP), 1–12. doi:10.1109/icnp49622.2020.9259360.
Delgado, O., Kechtban, L., Lugan, S., & Macq, B. (2020). Passive and active wireless device secure identification. IEEE Access, 8, 83312–83320. doi:10.1109/ACCESS.2020.2991649.
Korolkov, R. Y., & Kutsak, S. V. (2021). Received-signal-strength-based approach for detection and 2D indoor localization of evil twin rogue access point in 802.11. International Journal of Safety and Security Engineering, 11(1), 13–20. doi:10.18280/ijsse.110102.
Lu, Q., Li, S., Zhang, J., & Jiang, R. (2022). PEDR: Exploiting phase error drift range to detect full-model rogue access point attacks. Computers and Security, 114, 102581. doi:10.1016/j.cose.2021.102581.
Kim, D., Shin, D., & Shin, D. (2018). Unauthorized Access Point Detection Using Machine Learning Algorithms for Information Protection. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 1876–1878. doi:10.1109/trustcom/bigdatase.2018.00284.
Yang, Z., Lu, Q., Zhang, H., Chen, F., & Xian, H. (2024). Eliminating Rogue Access Point Attacks in IoT: A Deep Learning Approach With Physical-Layer Feature Purification and Device Identification. IEEE Internet of Things Journal, 11(8), 14886–14900. doi:10.1109/JIOT.2023.3345378.
Liu, W., & Papadimitratos, P. (2024). Position-based Rogue Access Point Detection. Proceedings - 9th IEEE European Symposium on Security and Privacy Workshops, Euro S and PW 2024, 436–442. doi:10.1109/EuroSPW61312.2024.00055.
Jing, W., Peng, L., Fu, H., & Hu, A. (2024). An Authentication Mechanism Based on Zero Trust With Radio Frequency Fingerprint for Internet of Things Networks. IEEE Internet of Things Journal, 11(13), 23683–23698. doi:10.1109/JIOT.2024.3385989.
Zhang, B., Zhang, T., Ma, Y., Xi, Z., He, C., Wang, Y., & Lv, Z. (2024). A Low-Latency Approach for RFF Identification in Open-Set Scenarios. Electronics, 13(2), 384. doi:10.3390/electronics13020384.
White, G. B., & Sjelin, N. (2022). The NIST Cybersecurity Framework. Research Anthology on Business Aspects of Cybersecurity, 39–55, IGI Global, Hershey, United States. doi:10.4018/978-1-6684-3698-1.ch003.
Selvarathinam, N. S., Dhar, A. K., & Biswas, S. (2019). Evil Twin Attack Detection using Discrete Event Systems in IEEE 802.11 Wi-Fi Networks. 2019 27th Mediterranean Conference on Control and Automation (MED), 316–321. doi:10.1109/med.2019.8798568.
Wang, J., Juarez, N., Kohm, E., Liu, Y., Yuan, J., & Song, H. (2019). Integration of SDR and UAS for Malicious Wi-Fi Hotspots Detection. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), 1–8. doi:10.1109/icnsurv.2019.8735296.
Sofaer, R. J., David, Y., Kang, M., Yu, J., Cao, Y., Yang, J., & Nieh, J. (2024). RogueOne: Detecting Rogue Updates via Differential Data-flow Analysis Using Trust Domains. Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, 1–13. doi:10.1145/3597503.3639199.
Syafrizal, M., Selamat, S. R., & Zakaria, N. A. (2020). Analysis of Cybersecurity Standard and Framework Components. International Journal of Communication Networks and Information Security, 12(3), 417–432. doi:10.17762/ijcnis.v12i3.4817.
Taherdoost, H. (2022). Understanding Cybersecurity Frameworks and Information Security Standards—A Review and Comprehensive Overview. Electronics (Switzerland), 11(14), 2181. doi:10.3390/electronics11142181.
Korolkov, R., Kutsak, S., & Voskoboinyk, V. (2021). Analysis of deauthentication attack in IEEE 802.11 networks and a proposal for its detection. Bulletin of VN Karazin Kharkiv National University, Series “Mathematical modeling. Information technology. Automated control systems”, 50, 59-71. doi:10.26565/2304-6201-2021-50-06.
DOI: 10.28991/ESJ-2025-09-01-016
Refbacks
- There are currently no refbacks.