Effective Forecasting of Insurer Capital Requirements: ARMA-GARCH, ARMA-GARCH-EVT, and DCC-GARCH Approaches
Abstract
Doi: 10.28991/ESJ-2024-08-06-03
Full Text: PDF
Keywords
References
Kajwang, B. (2022). Effect of government and regulatory framework on growth of insurance industry. International Journal of Law and Policy, 7(1), 17–25. doi:10.47604/ijlp.1604.
Schwarcz, D. & Schwarcz, S. L. (2014). Regulating systemic risk in insurance. The University of Chicago Law Review, 81(4), 1569–1640. doi:10.2139/ssrn.2404492.
Xie, Z. (2013). Risk and regulation–a broader view on their consistency. Annals of Actuarial Science, 7(2), 169–174. doi:10.1017/s1748499513000067.
Gaganis, C., Hasan, I., & Pasiouras, F. (2016). Regulations, institutions and income smoothing by managing technical reserves: international evidence from the insurance industry. Omega, 59, 113–129. doi:10.1016/j.omega.2015.05.010.
Zhou, M., Peng, L., & Zhang, R. (2021). Empirical likelihood test for the application of SWQMELE in fitting an ARMA-GARCH model. Journal of Time Series Analysis, 42(2), 222–239. doi:10.1111/jtsa.12563.
Huang, Y., Wang, H., Chen, Z., Feng, C., Zhu, K., Yang, X., & Yang, W. (2024). Evaluating cryptocurrency market risk on the blockchain: an empirical study using the ARMA-GARCH-VaR model. IEEE Open Journal of the Computer Society, 5, 83-94. doi.org/10.1109/ojcs.2024.3370603.
Petkov, P., Shopova, M., Varbanov, T., Ovchinnikov, E., & Lalev, A. (2024). Forecasting volatility of SOFIX index with GARCH models. doi.org/10.20944/preprints202406.1434.v1.
Chen, C. & Watanabe, T. (2018). Bayesian modeling and forecasting of value at risk via threshold realized volatility. Applied Stochastic Models in Business and Industry, 35(3), 747–765. doi:10.1002/asmb.2395.
Ali, F., Suri, P., Kaur, T., & Bisht, D. (2022). Modelling time-varying volatility using GARCH models: evidence from the Indian stock market. F1000Research, 11, 1098. doi:10.12688/f1000research.124998.2.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. doi:10.1016/0304-4076(86)90063-1.
Hossain, A. & Nasser, M. (2011). Comparison of the finite mixture of ARMA-GARCH, back propagation neural networks and support-vector machines in forecasting financial returns. Journal of Applied Statistics, 38(3), 533–551. doi:10.1080/02664760903521435.
Makhwiting, M. R., Lesaoana, M., & Sigauke, C. (2012). Modelling volatility and financial market risk of shares on the Johannesburg stock exchange. African Journal of Business Management, 6(27), 8065-8070. doi:10.5897/ajbm11.2525.
Rastogi, V. R., Vishvakarma, N. K., & Dhar, J. (2012). An empirical study on tactical asset allocation and forecasting. International Journal of Economics and Business Research, 4(4), 393–411. doi:10.1504/IJEBR.2012.047419.
Khelifa, H., Abderrahmane, D., & Belgoum, F. (2024). Modelling the volatility of Frankfurt stock exchange (DAX) returns using hybrid models. Financial Markets, Institutions and Risks, 8(1), 31-42. doi:10.61093/fmir.8(1).31-42.2024.
Bagalkot, S. S., A, D. H., & Naik, N. (2024). Novel grey wolf optimizer based parameters selection for GARCH and ARIMA models for stock price prediction. PeerJ Computer Science, 10, e1735. doi:10.7717/peerj-cs.1735.
Gençay, R. & Selçuk, F. (2004). Extreme value theory and value-at-risk: relative performance in emerging markets. International Journal of Forecasting, 20(2), 287–303. doi:10.1016/j.ijforecast.2003.09.005.
Lei, B., Zhang, B., & Song, Y. (2021). Volatility forecasting for high-frequency financial data based on web search index and deep learning model. Mathematics, 9(4), 320. doi:10.3390/math9040320.
Bedoui, R., Braeik, S., Goutte, S., & Guesmi, K. (2018). On the study of conditional dependence structure between oil, gold and USD exchange rates. International Review of Financial Analysis, 59, 134–146. doi:10.1016/j.irfa.2018.07.001.
Chege, C. K., Mungat’u, J. K., & Ngesa, O. (2016). Estimating the extreme financial risk of the Kenyan Shilling Versus US Dollar exchange rates. Science Journal of Applied Mathematics and Statistics, 4(6), 249–255. doi:10.11648/j.sjams.20160406.11.
Emenogu, N. G., Adenomon, M. O., & Nwaze, N. O. (2019). Modeling and forecasting daily stock returns of Guaranty Trust Bank Nigeria Plc using ARMA-GARCH models, persistence, half-life volatility and backtesting. Science World Journal, 14(3), 1–22.
Hollstein, F., & Prokopczuk, M. (2018). How aggregate volatility-of-volatility affects stock returns. The Review of Asset Pricing Studies, 8(2), 253–292. doi:10.1093/rapstu/rax019.
Iqbal, M., Iqbal, M., Jaskani, F., Iqbal, K., & Hassan, A. (2021). Time-series prediction of cryptocurrency market using machine learning techniques. EAI Endorsed Transactions on Creative Technologies, 8(28). doi:10.4108/eai.7-7-2021.170286.
Ofori-Boateng, K., Ohemeng, W., Agyapong, E. K., & Bribinti, B. J. (2022). The impact of COVID-19 on stock returns of listed firms on the stock market: Ghana's experience. African Journal of Economic and Management Studies, 13(1), 136–146. doi:10.1108/ajems-02-2021-0074.
Salameh, H. M., & Alzubi, B. (2018). An investigation of stock market volatility: evidence from Dubai financial market. Journal of Economic and Administrative Sciences, 34(1), 21–35. doi:10.1108/JEAS-04-2017-0020.
Shen, Z., Wan, Q., & Leatham, D. J. (2021). Bitcoin return volatility forecasting: a comparative study between GARCH and RNN. Journal of Risk and Financial Management, 14(7), 337. doi:10.3390/jrfm14070337.
Qi, H., & Wang, Y. (2022). Prediction and analysis of stock logarithmic returns based on ARMA-GARCH model. The 12th International Conference on Electronics, Communications and Networks (CECNet 2022), 4-7 November 2022, Online Conference. doi:10.3233/faia220575.
Wang, Y., Xiang, Y., Lei, X., & Zhou, Y. (2022). Volatility analysis based on GARCH-type models: evidence from the Chinese stock market. Economic Research-Ekonomska Istraživanja, 35(1), 2530–2554. doi:10.1080/1331677X.2021.1967771.
Degiannakis, S., Floros, C., & Dent, P. (2013). Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: international evidence. International Review of Financial Analysis, 27, 21–33. doi:10.1016/j.irfa.2012.06.001.
Degiannakis, S., & Kiohos, A. (2014). Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices. Journal of Economic Studies, 41(2), 216–232. doi:10.1108/jes-06-2012-0082.
Rossignolo, A. F., Fethi, M. D., & Shaban, M. (2012). Value-at-risk models and Basel capital charges: evidence from emerging and frontier stock markets. Journal of Financial Stability, 8(4), 303–319. doi.org/10.1016/j.jfs.2011.11.003.
Crato, N. & Ruiz, E. (2012). Can we evaluate the predictability of financial markets?. International Journal of Forecasting, 28(1), 1–2. doi:10.1016/j.ijforecast.2011.02.002.
Fernandez, V. (2003). Extreme value theory and value at risk. Revista de Análisis Económico, 18(1), 57–85.
Harmantzis, F. C., Miao, L., & Chien, Y. (2006). Empirical study of value at risk and expected shortfall models with heavy tails. The Journal of Risk Finance, 7(2), 117–135. doi:10.2139/ssrn.788624.
Shirvani, A. (2020). Stock returns and roughness extreme variations: a new model for monitoring 2008 market crash and 2015 flash crash. Applied Economics and Finance, 7(3), 78–95. doi:10.11114/aef.v7i3.4824.
Gençay, R., Selçuk, F., & Ulugülyaǧci, A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance: Mathematics and Economics, 33(2), 337–356. doi:10.1016/j.insmatheco.2003.07.004.
Gençay, R., & Selçuk, F. (2006). Overnight borrowing, interest rates and extreme value theory. European Economic Review, 50(3), 547–563. doi:10.1016/j.euroecorev.2004.10.010.
Zivot, E., & Wang, J. (2006). Modeling financial time series with S-PLUS. Springer, New York, United States. doi:10.1007/978-0-387-32348-0.
Bhattacharyya, M., & Ritolia, G. (2008). Conditional VaR using EVT–Towards a planned margin scheme. International Review of Financial Analysis, 17(2), 382–395. doi:10.1016/j.irfa.2006.08.004.
Chan, K. F., & Gray, P. (2006). Using extreme value theory to measure value-at-risk for daily electricity spot prices. International Journal of Forecasting, 22(2), 283–300. doi:10.1016/j.ijforecast.2005.10.002.
Deng, L., Ma, C., & Yang, W. (2011). Portfolio optimization via pair copula-GARCH-EVT-CVaR model. Systems Engineering Procedia, 2, 171–181. doi:10.1016/j.sepro.2011.10.020.
McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7(3-4), 271–300. doi:10.1016/S0927-5398(00)00012-8.
McAleer, M. & Da Veiga, B. (2008). Single index and portfolio models for forecasting value at risk thresholds. Journal of Forecasting, 27(3), 217–235. doi:10.1002/for.1054.
Brooks, C., & Persand, G. (2003). Volatility forecasting for risk management. Journal of Forecasting, 22(1), 1–2. doi:10.1002/for.841.
Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63(3), 443–494. doi:10.1016/S0304-405X(02)00068-5.
Chesnay, F., & Jondeau, E. (2001). Does correlation between stock returns really increase during turbulent periods?. Economic Notes, 30(1), 53–80. doi:10.1111/1468-0300.00047.
Longin, F., & Solnik, B. (2001). Extreme correlation of international equity markets. The Journal of Finance, 56(2), 649–676. doi:10.1111/0022-1082.00340.
Loretan, M. & English, W. B. (2000). Evaluating correlation breakdowns during periods of market volatility. SSRN Electronic Journal, 1-33. doi:10.2139/ssrn.231857.
Yang, S. Y. (2005). A DCC analysis of international stock market correlations: the role of Japan on the Asian Four Tigers. Applied Financial Economics Letters, 1(2), 89–93. doi:10.1080/17446540500054250.
Engle, R. F., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. Working Paper, NYU Stern School of Business, New York, United States. doi:10.3386/w8554.
Engle, R. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350. doi:10.1198/073500102288618487.
Abdelkefi, S. Z., & Khoufi, W. (2015). Stock markets linkages before, during and after subprimes crisis: bivariate BEKK GARCH (1, 1) and DCC Models. International Journal of Economics, Finance and Management Sciences, 3(3), 213–230. doi:10.11648/j.ijefm.20150303.18.
Ampountolas, A. (2022). Cryptocurrencies intraday high-frequency volatility spillover effects using univariate and multivariate GARCH models. International Journal of Financial Studies, 10(3), 51. doi:10.3390/ijfs10030051.
Choi, K., & Hammoudeh, S. (2010). Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment. Energy Policy, 38(8), 4388–4399. doi:10.1016/j.enpol.2010.03.067.
Cretì, A., Joëts, M., & Mignon, V. (2013). On the links between stock and commodity markets' volatility. Energy Economics, 37, 16–28. doi:10.1016/j.eneco.2013.01.005.
Jhunjhunwala, S., & Suresh, S. (2020). Commodity and stock market interlinkages: opportunities and challenges for investors in Indian market. Global Business Review, 25(2_suppl), S42-S58. doi:10.1177/0972150920946413.
Joyo, A. S., & Lefen, L. (2019). Stock market integration of Pakistan with its trading partners: a multivariate DCC-GARCH model approach. Sustainability, 11(2), 303. doi:10.3390/su11020303.
Liu, L., Rafique, A., Abbas, N., Umer Quddoos, M., Ahmad, M. M., & Siddiqi, A. A. (2024). Systemic risk spillover between the stock market and banking deposits: evidence from a sustainability perspective in the South Asian countries. Plos One, 19(7), e0288310. doi.org/10.1371/journal.pone.0288310.
Mishra, A. & Dash, A. K. (2024). Return volatility of Asian stock exchanges; a GARCH DCC analysis with reference of bitcoin and global crude oil price movement. Journal of Chinese Economic and Foreign Trade Studies, 17(1), 29-48. doi.org/10.1108/jcefts-01-2024-0009.
Adailah, R. M., Al-Damour, S. B., & Al-Majali, A. (2024). The impact of global energy price volatility on oil derivative and local price in Jordan: using DCC-GARCH model. International Journal of Energy Economics and Policy, 14(1), 336-348. doi.org/10.32479/ijeep.15158.
Ardia, D. (2008). Financial risk management with Bayesian estimation of GARCH models theory and applications. Springer Berlin, Germany. doi:10.1007/978-3-540-78657-3.
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting methods and applications (3rd Edi.). John Wiley & Sons, New York, United States. doi:10.2307/2287014.
Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16(1), 3–-14. doi:10.1016/0304-4076(81)90071-3.
Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. L. (2006). Statistics of extremes: theory and applications. John Wiley & Sons, New York, United States. doi:10.1002/0470012382.
Balkema, A. A., & De Haan, L. (1974). Residual life time at great age. The Annals of Probability, 2(5), 792–804. doi:10.1214/aop/1176996548.
Pickands, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3(1), 119–131. doi:10.1214/aos/1176343003.
Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91. doi.org/10.2307/2975974.
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. Washington, DC: Division of Research and Statistics, Division of Monetary Affairs, Federal Reserve Board, United States.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862. doi:10.2307/2527341.
Floros, C. (2007). The use of GARCH models for the calculation of minimum capital risk requirements: international evidence. International Journal of Managerial Finance, 3(4), 360–371. doi:10.1108/17439130710824361.
Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer Series in Statistics, Springer London, United Kingdom. doi:10.1007/978-1-4471-3675-0.
Bee, M., Dupuis, D. J., & Trapin, L. (2016). Realizing the extremes: estimation of tail-risk measures from a high-frequency perspective. Journal of Empirical Finance, 36, 86-99. doi:10.1016/j.jempfin.2016.01.006.
Huang, C. K., North, D., & Zewotir, T. (2017). Exchangeability, extreme returns and Value-at-Risk forecasts. Physica A: Statistical Mechanics and its Applications, 477, 204–216. doi:10.1016/j.physa.2017.02.080.
Karmakar, M., & Shukla, G. K. (2015). Managing extreme risk in some major stock markets: an extreme value approach. International Review of Economics & Finance, 35, 1–25. doi:10.1016/j.iref.2014.09.001.
Li, L. (2017). A comparative study of GARCH and EVT model in modeling value-at-risk. Journal of Applied Business and Economics, 19(7), 27-48.
Totić, S., & Božović, M. (2016). Tail risk in emerging markets of Southeastern Europe. Applied Economics, 48(19), 1785–1798. doi:10.1080/00036846.2015.1109037.
Degiannakis, S., Dent, P., & Floros, C. (2014). A Monte Carlo simulation approach to forecasting multi-period value at risk and expected shortfall using the FIGARCH-SKT specification. The Manchester School, 82(1), 71–102. doi:10.1111/manc.12001.
Echaust, K., & Just, M. (2020). Value at risk estimation using the GARCH-EVT approach with optimal tail selection. Mathematics, 8(1), 114. doi:10.3390/math8010114.
Gründl, H., Dong, M., & Gal, J. (2016). The evolution of insurer portfolio investment strategies for long-term investing. OECD Journal: Financial Market Trends, 2016(2), 1–55. doi:10.1787/fmt-2016-5jln3rh7qf46.
Christoffersen, P., Errunza, V., Jacobs, K., & Jin, X. (2014). Correlation dynamics and international diversification benefits. International Journal of Forecasting, 30(3), 807–824. doi:10.1016/j.ijforecast.2014.01.001.
Olgun, S. & Polat, M. (2024). Volatility and international interactions in financial markets: an analysis of the Turkish stock exchange and G7 countries. Trends in Business and Economics, 38(2), 102-112. doi:10.16951/trendbusecon.1468689.
DOI: 10.28991/ESJ-2024-08-06-03
Refbacks
- There are currently no refbacks.