Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing

Stefanus H. Prajitna, Christian Harito, Brian Yuliarto

Abstract


Microfluidics is essential for precise manipulation of fluids in small channels. However, conventional manufacturing processes for microfluidic devices are expensive, time-consuming, and require specialized equipment in a clean room. While recent studies have improved the cost-effectiveness of this device, there is still a need for further advancement in cost efficiency. Therefore, this study aimed to develop a custom-built direct-ink writing (DIW) printer for manufacturing microfluidic devices that is more affordable. Custom-built DIW directly printed microfluidic channels onto microscope slide glass using RTV (Room Temperature Vulcanizing) silicone sealant. To finish the microfluidics manufacturing, the printed channel will be assembled by placing the same glass on top of the printed layer. This method eliminated the need for polydimethylsiloxane (PDMS) molds and casting processes that were still found in recent studies. This innovative $250 (USD) custom-built DIW method takes 15 seconds to print microfluidics channels and showed a significant cost reduction, with each microfluidics device costing only $0.071 (USD) compared to $0.90 (USD) in previous studies. This study makes microfluidics more affordable and accessible for biomedical use.

 

Doi: 10.28991/ESJ-2025-09-01-01

Full Text: PDF


Keywords


Microfluidics; RTV Silicone; Direct Ink Writing; Particle Separation; Blood Separation; Image Processing.

References


Liu, Z., Li, M., Dong, X., Ren, Z., Hu, W., & Sitti, M. (2022). Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nature Communications, 13(1), 2016. doi:10.1038/s41467-022-29645-2.

Convery, N., & Gadegaard, N. (2019). 30 years of microfluidics. Micro and Nano Engineering, 2, 76–91. doi:10.1016/j.mne.2019.01.003.

Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., & Tasoglu, S. (2016). 3D-printed microfluidic devices. Biofabrication, 8(2), 022001. doi:10.1088/1758-5090/8/2/022001.

Scott, M. D., Matthews, K., & Ma, H. (2019). Assessing the Vascular Deformability of Erythrocytes and Leukocytes: From Micropipettes to Microfluidics. Current and Future Aspects of Nanomedicine, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.90131.

Martawidjaja, M., Yemima, S., Hananda, N., Kamul, A., Prajitna, S. H., Harito, C., & Susanto, R. (2023). 3D Printing for medical devices: Mini review and bibliometric study. E3S Web of Conferences, 426. doi:10.1051/e3sconf/202342601077.

Saha, S. C., Francis, I., & Nassir, T. (2022). Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids, 7(9), 308. doi:10.3390/fluids7090308.

Tanjaya, H., Darius, R. A., Debora, Hananda, N., Kamul, A., Prajitna, S. H., Harito, C., & Susanto, R. (2023). A review of Microfluidic blood separation techniques. E3S Web of Conferences, 426. doi:10.1051/e3sconf/202342601063.

Tomaiuolo, G., Lanotte, L., D’Apolito, R., Cassinese, A., & Guido, S. (2016). Microconfined flow behavior of red blood cells by image analysis techniques. 4th Micro and Nano Flows Conference, 7-10 September, 2014, London, United Kingdom.

Agarwal, S., Kumar, V., & Shakher, C. (2017). Analysis of red blood cell parameters by Talbot-projected fringes. Journal of Biomedical Optics, 22(10), 1. doi:10.1117/1.jbo.22.10.106009.

Salieb‐Beugelaar, G. B., Liu, K., & Hunziker, P. (2018). Subtractive Manufacturing of Microfluidic 3D Braid Mixers. Advanced Engineering Materials, 20(11), 1800243. doi:10.1002/adem.201800243.

Juang, Y.-J., & Chiu, Y.-J. (2022). Fabrication of Polymer Microfluidics: An Overview. Polymers, 14(10), 2028. doi:10.3390/polym14102028.

Richmond, T., & Tompkins, N. (2021). 3D microfluidics in PDMS: manufacturing with 3D molding. Microfluidics and Nanofluidics, 25(9). doi:10.1007/s10404-021-02478-z.

Ayoib, A., Karim, N. A. A. A., Hashim, U., Shamsuddin, S. A., Abd Rahman, S. F., Fathil, M. F. M., & Parmin, N. A. (2024). Cost-Effective Fabrication of Polydimethylsiloxane (PDMS) Microfluidics for Point-of-Care Application. International Journal of Nanoelectronics and Materials (IJNeaM), 17, 143–151. doi:10.58915/ijneam.v17ijune.848.

Gonçalves, M., Gonçalves, I. M., Borges, J., Faustino, V., Soares, D., Vaz, F., Minas, G., Lima, R., & Pinho, D. (2024). Polydimethylsiloxane Surface Modification of Microfluidic Devices for Blood Plasma Separation. Polymers, 16(10), 1416. doi:10.3390/polym16101416.

Fang, X., Sun, C., Dai, P., Xian, Z., Su, W., Zheng, C., Xing, D., Xu, X., & You, H. (2024). Capillary Force-Driven Quantitative Plasma Separation Method for Application of Whole Blood Detection Microfluidic Chip. Micromachines, 15(5), 619. doi:10.3390/mi15050619.

Rodríguez, C. F., Báez-Suárez, M., Muñoz-Camargo, C., Reyes, L. H., Osma, J. F., & Cruz, J. C. (2024). Zweifach–Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO2 Laser-Ablated PMMA. Micromachines, 15(7), 932. doi:10.3390/mi15070932.

Liang, W., Ge, X., Ge, J., Li, T., Zhao, T., Chen, X., Song, Y., Cui, Y., Khan, M., Ji, J., Pang, X., & Liu, R. (2018). Reduced Graphene Oxide Embedded with MQ Silicone Resin Nano-Aggregates for Silicone Rubber Composites with Enhanced Thermal Conductivity and Mechanical Performance. Polymers, 10(11), 1254. doi:10.3390/polym10111254.

Sharma, A., Jain, V., & Gupta, D. (2019). Comparative analysis of chipping mechanics of float glass during rotary ultrasonic drilling and conventional drilling: For multi-shaped tools. Machining Science and Technology, 23(4), 547–568. doi:10.1080/10910344.2019.1575402.

Jang, Y., Nabae, H., & Suzumori, K. (2022). Effects of Surface Roughness on Direct Plasma Bonding between Silicone Rubbers Fabricated with 3D-Printed Molds. ACS Omega, 7(49), 45004–45013. doi:10.1021/acsomega.2c05308.

Liao, Z., Yang, J., Hossain, M., Chagnon, G., Jing, L., & Yao, X. (2021). On the stress recovery behaviour of Ecoflex silicone rubbers. International Journal of Mechanical Sciences, 206. doi:10.1016/j.ijmecsci.2021.106624.

van den Berg, D., Asker, D., Awad, T. S., Lavielle, N., & Hatton, B. D. (2023). Mechanical deformation of elastomer medical devices can enable microbial surface colonization. Scientific Reports, 13(1), 7691. doi:10.1038/s41598-023-34217-5.

Brakewood, W., Lee, K., Schneider, L., Lawandy, N., & Tripathi, A. (2022). A capillary flow-driven microfluidic device for point-of-care blood plasma separation. Frontiers in Lab on a Chip Technologies, 1, 1051552. doi:10.3389/frlct.2022.1051552.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-01

Refbacks

  • There are currently no refbacks.