Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing
Abstract
Doi: 10.28991/ESJ-2025-09-01-01
Full Text: PDF
Keywords
References
Liu, Z., Li, M., Dong, X., Ren, Z., Hu, W., & Sitti, M. (2022). Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nature Communications, 13(1), 2016. doi:10.1038/s41467-022-29645-2.
Convery, N., & Gadegaard, N. (2019). 30 years of microfluidics. Micro and Nano Engineering, 2, 76–91. doi:10.1016/j.mne.2019.01.003.
Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., & Tasoglu, S. (2016). 3D-printed microfluidic devices. Biofabrication, 8(2), 022001. doi:10.1088/1758-5090/8/2/022001.
Scott, M. D., Matthews, K., & Ma, H. (2019). Assessing the Vascular Deformability of Erythrocytes and Leukocytes: From Micropipettes to Microfluidics. Current and Future Aspects of Nanomedicine, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.90131.
Martawidjaja, M., Yemima, S., Hananda, N., Kamul, A., Prajitna, S. H., Harito, C., & Susanto, R. (2023). 3D Printing for medical devices: Mini review and bibliometric study. E3S Web of Conferences, 426. doi:10.1051/e3sconf/202342601077.
Saha, S. C., Francis, I., & Nassir, T. (2022). Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids, 7(9), 308. doi:10.3390/fluids7090308.
Tanjaya, H., Darius, R. A., Debora, Hananda, N., Kamul, A., Prajitna, S. H., Harito, C., & Susanto, R. (2023). A review of Microfluidic blood separation techniques. E3S Web of Conferences, 426. doi:10.1051/e3sconf/202342601063.
Tomaiuolo, G., Lanotte, L., D’Apolito, R., Cassinese, A., & Guido, S. (2016). Microconfined flow behavior of red blood cells by image analysis techniques. 4th Micro and Nano Flows Conference, 7-10 September, 2014, London, United Kingdom.
Agarwal, S., Kumar, V., & Shakher, C. (2017). Analysis of red blood cell parameters by Talbot-projected fringes. Journal of Biomedical Optics, 22(10), 1. doi:10.1117/1.jbo.22.10.106009.
Salieb‐Beugelaar, G. B., Liu, K., & Hunziker, P. (2018). Subtractive Manufacturing of Microfluidic 3D Braid Mixers. Advanced Engineering Materials, 20(11), 1800243. doi:10.1002/adem.201800243.
Juang, Y.-J., & Chiu, Y.-J. (2022). Fabrication of Polymer Microfluidics: An Overview. Polymers, 14(10), 2028. doi:10.3390/polym14102028.
Richmond, T., & Tompkins, N. (2021). 3D microfluidics in PDMS: manufacturing with 3D molding. Microfluidics and Nanofluidics, 25(9). doi:10.1007/s10404-021-02478-z.
Ayoib, A., Karim, N. A. A. A., Hashim, U., Shamsuddin, S. A., Abd Rahman, S. F., Fathil, M. F. M., & Parmin, N. A. (2024). Cost-Effective Fabrication of Polydimethylsiloxane (PDMS) Microfluidics for Point-of-Care Application. International Journal of Nanoelectronics and Materials (IJNeaM), 17, 143–151. doi:10.58915/ijneam.v17ijune.848.
Gonçalves, M., Gonçalves, I. M., Borges, J., Faustino, V., Soares, D., Vaz, F., Minas, G., Lima, R., & Pinho, D. (2024). Polydimethylsiloxane Surface Modification of Microfluidic Devices for Blood Plasma Separation. Polymers, 16(10), 1416. doi:10.3390/polym16101416.
Fang, X., Sun, C., Dai, P., Xian, Z., Su, W., Zheng, C., Xing, D., Xu, X., & You, H. (2024). Capillary Force-Driven Quantitative Plasma Separation Method for Application of Whole Blood Detection Microfluidic Chip. Micromachines, 15(5), 619. doi:10.3390/mi15050619.
Rodríguez, C. F., Báez-Suárez, M., Muñoz-Camargo, C., Reyes, L. H., Osma, J. F., & Cruz, J. C. (2024). Zweifach–Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO2 Laser-Ablated PMMA. Micromachines, 15(7), 932. doi:10.3390/mi15070932.
Liang, W., Ge, X., Ge, J., Li, T., Zhao, T., Chen, X., Song, Y., Cui, Y., Khan, M., Ji, J., Pang, X., & Liu, R. (2018). Reduced Graphene Oxide Embedded with MQ Silicone Resin Nano-Aggregates for Silicone Rubber Composites with Enhanced Thermal Conductivity and Mechanical Performance. Polymers, 10(11), 1254. doi:10.3390/polym10111254.
Sharma, A., Jain, V., & Gupta, D. (2019). Comparative analysis of chipping mechanics of float glass during rotary ultrasonic drilling and conventional drilling: For multi-shaped tools. Machining Science and Technology, 23(4), 547–568. doi:10.1080/10910344.2019.1575402.
Jang, Y., Nabae, H., & Suzumori, K. (2022). Effects of Surface Roughness on Direct Plasma Bonding between Silicone Rubbers Fabricated with 3D-Printed Molds. ACS Omega, 7(49), 45004–45013. doi:10.1021/acsomega.2c05308.
Liao, Z., Yang, J., Hossain, M., Chagnon, G., Jing, L., & Yao, X. (2021). On the stress recovery behaviour of Ecoflex silicone rubbers. International Journal of Mechanical Sciences, 206. doi:10.1016/j.ijmecsci.2021.106624.
van den Berg, D., Asker, D., Awad, T. S., Lavielle, N., & Hatton, B. D. (2023). Mechanical deformation of elastomer medical devices can enable microbial surface colonization. Scientific Reports, 13(1), 7691. doi:10.1038/s41598-023-34217-5.
Brakewood, W., Lee, K., Schneider, L., Lawandy, N., & Tripathi, A. (2022). A capillary flow-driven microfluidic device for point-of-care blood plasma separation. Frontiers in Lab on a Chip Technologies, 1, 1051552. doi:10.3389/frlct.2022.1051552.
DOI: 10.28991/ESJ-2025-09-01-01
Refbacks
- There are currently no refbacks.