Analyzing Socio-Academic Factors and Predictive Modeling of Student Performance Using Machine Learning Techniques
Abstract
Doi: 10.28991/ESJ-2024-08-04-05
Full Text: PDF
Keywords
References
Juniarni, C., Sodikin, M. A., Akhyar, A., Almujahid, A., & Asvio, N. (2024). The Importance of Personalized Learning: How to Tailor Education to the Individual Needs of Students. Education Studies and Teaching Journal (EDUTECH), 1(1), 188-196.
Mulaa, E. (2020). Influence of socio-economic, psychological and physical factors on academic performance among orphaned pupils in public primary schools in Kapseret Sub-County, Uasin Gishu County, Kenya. PhD Thesis, Africa Nazarene University, Nairobi, Kenya.
Johnson, E. A., Inyangetoh, J. A., Rahmon, H. A., Jimoh, T. G., Dan, E. E., & Esang, M. O. (2024). An Intelligent Analytic Framework for Predicting Students Academic Performance Using Multiple Linear Regression and Random Forest. European Journal of Computer Science and Information Technology, 12(3), 56-70.
Zhang, Y., Yun, Y., An, R., Cui, J., Dai, H., & Shang, X. (2021). Educational data mining techniques for student performance prediction: method review and comparison analysis. Frontiers in psychology, 12, 698490. doi:10.1109/TASE.2021.3077537.
Keller, L., Preckel, F., Eccles, J. S., & Brunner, M. (2022). Top-performing math students in 82 countries: An integrative data analysis of gender differences in achievement, achievement profiles, and achievement motivation. Journal of Educational Psychology, 114(5), 966. doi:10.1037/edu0000685.
Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques. IEEE access, 9, 39707-39716. doi:10.1109/ACCESS.2021.3064084.
Coleman, J. S. (1968). Equality of Educational Opportunity. Equity & Excellence in Education, 6(5), 19–28. doi:10.1080/0020486680060504.
Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453. doi:10.3102/00346543075003417.
Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman google schola, 2, 143-154.
Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268. doi:10.1207/S15327965PLI1104_01.
Credé, M., & Kuncel, N. R. (2008). Study Habits, Skills, and Attitudes: The Third Pillar Supporting Collegiate Academic Performance. Perspectives on Psychological Science, 3(6), 425–453. doi:10.1111/j.1745-6924.2008.00089.x.
Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. Journal of Higher Education, 79(5), 540–563. doi:10.1353/jhe.0.0019.
Goldhaber, D. D., & Brewer, D. J. (2000). Does teacher certification matter? High school teacher certification status and student achievement. Educational Evaluation and Policy Analysis, 22(2), 129–145. doi:10.3102/01623737022002129.
Halpern, D. F. (2000). Sex differences in cognitive abilities. Psychology press, New York, United States. doi:10.4324/9781410605290.
Stoet, G., & Geary, D. C. (2013). Sex Differences in Mathematics and Reading Achievement Are Inversely Related: Within- and Across-Nation Assessment of 10 Years of PISA Data. PLoS ONE, 8(3), 57988. doi:10.1371/journal.pone.0057988.
Haveman, R., & Wolfe, B. (1995). The determinants of children's attainments: A review of methods and findings. Journal of economic literature, 33(4), 1829-1878.
Duckworth, A. L., & Seligman, M. E. P. (2005). Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychological Science, 16(12), 939–944. doi:10.1111/j.1467-9280.2005.01641.x.
Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic achievement. econometrica, 73(2), 417-458. doi:10.1111/j.1468-0262.2005.00584.x.
Thapa, A., Cohen, J., Guffey, S., & Higgins-D’Alessandro, A. (2013). A Review of School Climate Research. Review of Educational Research, 83(3), 357–385. doi:10.3102/0034654313483907.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint, arXiv:1202.4815 doi:10.48550/arXiv.1202.4815.
He, J., Baileyt, J., Rubinstein, B. I. P., & Zhang, R. (2015). Identifying at-risk students in massive open online courses. Proceedings of the National Conference on Artificial Intelligence, 3(1), 1749–1755. doi:10.1609/aaai.v29i1.9471.
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep knowledge tracing. Advances in Neural Information Processing Systems 28 (NIPS 2015), 7-12 December, 2015, Montreal, Canada.
Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411–426. doi:10.1080/08839510490442058.
Kaggle. (2024). Student Attitude and Behavior. Kaggle, Mountain View, United States. Available online: https://www.kaggle.com/datasets/susanta21/student-attitude-and-behavior (accessed on July 2024).
Saar-Tsechansky, M., & Provost, F. (2007). Handling missing values when applying classification models. Journal of Machine Learning Research 8 (2007) 1625-1657.
Patro, S. G. K., & Sahu, K. K. (2015). Normalization: A Preprocessing Stage. IARJSET, 20–22. doi:10.17148/iarjset.2015.230.
Sinsomboonthong, S. (2022). Performance Comparison of New Adjusted Min-Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification. International Journal of Mathematics and Mathematical Sciences, 2022(1), 3584406. doi:10.1155/2022/3584406.
Seger, C. (2018). An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
Sanderson, P., & Fisher, C. (1994). Exploratory Sequential Data Analysis: Foundations. Human-Computer Interaction, 9(3), 251–317. doi:10.1207/s15327051hci0903&4_2.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
Jolliffe, I. (2005). Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science, John Wiley & Sons, Hoboken, United States. doi:10.1002/0470013192.bsa501.
DOI: 10.28991/ESJ-2024-08-04-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Khadija Alhumaid, Maha Khalifa, Said Salloum, Rima Shishakly, Mohammad Almaiah, Tayseer Alkhdour, Bilal Alwadi