Investigating the Effectiveness of Coal-Fired Power Plant Operations: Management, Technical and Air Pollution Aspects

Zamzam T. A. Ramly, Mohd Y. Ishak, Ahmad M. Abdullah, Marzuki Ismail, Samsuri Abdullah, Amalina Abu Mansor

Abstract


Coal-fired energy has been a major part of Malaysia's power supply, causing environmental pollution and slowing sustainable growth. To address these issues, we evaluated a coal-fired power plant's efficiency using a questionnaire completed by industry experts. This study seeks to find factors affecting coal-fired power generation efficiency and create a statistical model. The questionnaire covered five areas: best management practices, technology efficiency, cost efficiency, fuel efficiency, air pollution control, and the best available technique. Principal Component Analysis (PCA) was used to simplify large data sets. The results showed that 15 principal components were valid, with a KMO value of 0.836 (greater than 0.50) and a Bartlett Test value below 0.05. The results show a strong correlation between the best available technique and various indicators: best management practice (r=0.614, p<0.01), technology efficiency (r=0.719, p<0.01), cost efficiency (r=0.529, p<0.05), fuel efficiency (r=0.662, p<0.01), and air pollution control efficiency (r=-0.752, p<0.01). The model indicates that verifying the standard operating procedure (SOP) is crucial for improving power generation efficiency and reducing human error (R²=0.914). This study pinpoints issues reducing power plant efficiency, particularly regarding emissions, and shows that the regression model is strong (R² = 0.916–0.647). It will assist policymakers and researchers in creating sustainable environmental management plans.

 

Doi: 10.28991/ESJ-2025-09-01-06

Full Text: PDF


Keywords


Coal; Bag Filter; Efficiency; Power Plant; Malaysia.

References


Napi, N. N. L. M., Abdullah, S., Mansor, A. A., Ahmed, A. N., & Ismail, M. (2021). Development of models for forecasting of seasonal ground level ozone (O3). Journal of Engineering Science and Technology, 16(4), 3136–3154.

Wei, X., Tong, Q., Magill, I., Vithayasrichareon, P., & Betz, R. (2020). Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China’s electricity sector. Energy Economics, 92, 104917. doi:10.1016/j.eneco.2020.104917.

Kwon, E., Jin, T., You, Y. A., & Kim, B. (2024). Joint effect of long-term exposure to ambient air pollution on the prevalence of chronic obstructive pulmonary disease using the Korea National Health and Nutrition Examination Survey 2010–2019. Chemosphere, 358, 142137. doi:10.1016/j.chemosphere.2024.142137.

Abdullah, S., Mansor, A. A., Ahmed, A. N., Napi, N. N. L. M., & Ismail, M. (2019). Carbon footprint assessment for academic institution: A UI greenmetric approach. International Journal of Scientific and Technology Research, 8(11), 1752–1755.

Clark, R., Zucker, N., & Urpelainen, J. (2020). The future of coal-fired power generation in Southeast Asia. Renewable and Sustainable Energy Reviews, 121, 109650. doi:10.1016/j.rser.2019.109650.

Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Yusuf, R. O. (2018). Energy consumption trends and their linkages with renewable energy policies in East and Southeast Asian countries: Challenges and opportunities. Sustainable Environment Research, 28(6), 257–266. doi:10.1016/j.serj.2018.08.006.

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report, 13(4), 544-559.

Voss, S., Schneider, A., Huth, C., Wolf, K., Markevych, I., Schwettmann, L., Rathmann, W., Peters, A., & Breitner, S. (2021). Long-term exposure to air pollution, road traffic noise, residential greenness, and prevalent and incident metabolic syndrome: Results from the population-based KORA F4/FF4 cohort in Augsburg, Germany. Environment International, 147, 106364. doi:10.1016/j.envint.2020.106364.

Saini, J., Dutta, M., & Marques, G. (2020). A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustainable Environment Research, 30(1), 1–12. doi:10.1186/s42834-020-0047-y.

Yiing, C. F., Yaacob, N. M., & Hussein, H. (2013). Achieving Sustainable Development: Accessibility of Green Buildings in Malaysia. Procedia - Social and Behavioral Sciences, 101, 120–129. doi:10.1016/j.sbspro.2013.07.185.

Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. (2011). The case study approach. BMC Medical Research Methodology, 11(1). doi:10.1186/1471-2288-11-100.

Lecklitner, G. L. (1984). Protecting the rights of mental patients: A view of the future. Ph.D. Thesis, The Ohio State University, Columbus, United States.

Salkind, N. (2010). Encyclopedia of Research Design. In Encyclopedia of Research Design. Sage Publications, Thousand Oaks, United States. doi:10.4135/9781412961288.

McKenna, H. P. (1994). The Delphi technique: a worthwhile research approach for nursing? Journal of Advanced Nursing, 19(6), 1221–1225. doi:/10.1111/j.1365-2648.1994.tb01207.x.

Serene Olin, S., Kutash, K., Pollock, M., Burns, B. J., Kuppinger, A., Craig, N., Purdy, F., Armusewicz, K., Wisdom, J., & Hoagwood, K. E. (2013). Developing Quality Indicators for Family Support Services in Community Team-Based Mental Health Care. Administration and Policy in Mental Health and Mental Health Services Research, 41(1), 7–20. doi:10.1007/s10488-013-0501-9.

Kalaian, S. A., & Kasim, R. M. (2012). Terminating sequential Delphi survey data collection. Practical Assessment, Research & Evaluation, 17(5), 5.

Landeta, J., & Barrutia, J. (2011). People consultation to construct the future: A Delphi application. International Journal of Forecasting, 27(1), 134–151. doi:10.1016/j.ijforecast.2010.04.001.

Hung, H. L., Altschuld, J. W., & Lee, Y. F. (2008). Methodological and conceptual issues confronting a cross-country Delphi study of educational program evaluation. Evaluation and Program Planning, 31(2), 191–198. doi:10.1016/j.evalprogplan.2008.02.005.

Ahmad, A. N., Abdullah, S., Mansor, A. A., Dom, N. C., Ahmed, A. N., Ismail, N. A., & Ismail, M. (2023). Prediction of Daytime and Nighttime Ground-Level Ozone Using the Hybrid Regression Models. ARPN Journal of Engineering and Applied Sciences, 18(11), 1258–1269. doi:10.59018/0623162.

Zhao, X., Cao, Y., & Cheng, Z. (2024). Perception matters: How air pollution influences life satisfaction in China. Heliyon, 10(11). doi:10.1016/j.heliyon.2024.e31927.

Rodríguez-Mañas, L., Féart, C., Mann, G., Viña, J., Chatterji, S., Chodzko-Zajko, W., Gonzalez-Colaço Harmand, M., Bergman, H., Carcaillon, L., Nicholson, C., Scuteri, A., Sinclair, A., Pelaez, M., Van der Cammen, T., Beland, F., Bickenbach, J., Delamarche, P., Ferrucci, L., Fried, L. P., … Vega, E. (2012). Searching for an Operational Definition of Frailty: A Delphi Method Based Consensus Statement. The Frailty Operative Definition-Consensus Conference Project. The Journals of Gerontology: Series A, 68(1), 62–67. doi:10.1093/gerona/gls119.

Jáni, M., Mikeš, O., Marecek, R., Brazdil, M., & Mareckova, K. (2024). Prenatal exposure to air pollution and maternal depression: Combined effects on brain aging and mental health in young adulthood. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 134, 111062. doi:10.1016/j.pnpbp.2024.111062.

Cardinali, M., Beenackers, M. A., Timmeren, A. van, & Pottgiesser, U. (2024). Urban green spaces, self-rated air pollution and health: A sensitivity analysis of green space characteristics and proximity in four European cities. Health & Place, 89, 103300. doi:10.1016/j.healthplace.2024.103300.

Squillacioti, G., Bellisario, V., Ghelli, F., Marcon, A., Marchetti, P., Corsico, A. G., Pirina, P., Maio, S., Stafoggia, M., Verlato, G., & Bono, R. (2024). Air pollution and oxidative stress in adults suffering from airway diseases. Insights from the Gene Environment Interactions in Respiratory Diseases (GEIRD) multi-case control study. Science of the Total Environment, 909, 168601. doi:10.1016/j.scitotenv.2023.168601.

Tian, F., Qian, Z., Zhang, Z., Liu, Y., Wu, G., Wang, C., McMillin, S. E., Bingheim, E., & Lin, H. (2024). Air pollution, APOE genotype and risk of dementia among individuals with cardiovascular diseases: A population-based longitudinal study. Environmental Pollution, 347, 123758. doi:10.1016/j.envpol.2024.123758.

Liu, J., Wang, R., Tian, Y., & Zhang, M. (2024). The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities. Journal of Cleaner Production, 470, 143255. doi:10.1016/j.jclepro.2024.143255.

Jo, J., Jo, B., Kim, J., Kim, S., & Han, W. (2020). Development of an IoT-Based indoor air quality monitoring platform. Journal of Sensors, 2020(1), 8749764. doi:10.1155/2020/8749764.

Kumar, P., Singh, A. B., Arora, T., Singh, S., & Singh, R. (2023). Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Science of the Total Environment, 872, 162163. doi:10.1016/j.scitotenv.2023.162163.

Cattano, C. (2013). Development of a Rating System to Measure the Vulnerability of Residential Homes to Natural Hazards. PhD Thesis, Clemson University, Clemson, United States.

Norouzian-Maleki, S., Bell, S., Hosseini, S. B., & Faizi, M. (2015). Developing and testing a framework for the assessment of neighbourhood liveability in two contrasting countries: Iran and Estonia. Ecological Indicators, 48, 263–271. doi:10.1016/j.ecolind.2014.07.033.

Lilja, K. K., Laakso, K., & Palomki, J. (2011). Using the Delphi method. 2011 Proceedings of PICMET '11: Technology Management in the Energy Smart World (PICMET), 31 July– 4 August, 2011, Portland, United States.

Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 100. doi:10.1038/s43586-022-00184-w.

Kherif, F., & Latypova, A. (2020). Principal component analysis. Machine Learning, 209–225, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-815739-8.00012-2.

Coccato, A., & Caggiani, M. C. (2024). An overview of Principal Components Analysis approaches in Raman studies of cultural heritage materials. Journal of Raman Spectroscopy, 55(2), 125–147. doi:10.1002/jrs.6621.

Jinli, W. E. N; Weiyu, C. A. O; Yue, W; Yanli, H. E; Yining, S. U. N; Pengqiang, Y; Wenpeng, L. U. Comprehensive evaluation of fruit quality of Actinidia arguta based on principal component analysis and cluster analysis. Shipin gongye ke-ji. 2024, 45(1), 247-257. doi:10.13386/j.issn1002-0306.2023060002.

Chaleshtori, A. E., & Aghaie, A. (2024). A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis. Reliability Engineering & System Safety, 242, 109720. doi:10.1016/j.ress.2023.109720.

Olivieri, A. C. (2024). Principal Component Analysis. Introduction to Multivariate Calibration. Springer, Cham, Switzerland. doi:10.1007/978-3-031-64144-2_4.

Abdullah, S., Fuad, M. F. A., Dom, N. C., Ahmed, A. N., Yusof, K. M. K. K., Zulkifli, M. F. R., Mansor, A. A., Mohd Napi, N. N. L., & Ismail, M. (2021). Effects of environmental noise pollution towards school children. Malaysian Journal of Medicine and Health Sciences, 17(3), 38–44.

Wernecke, B., Langerman, K. E., Howard, A. I., & Wright, C. Y. (2024). Fuel switching and energy stacking in low-income households in South Africa: A review with recommendations for household air pollution exposure research. Clean Air Journal, 34(1), 18555. doi:10.17159/caj/2024/34/1.18555.

Petry, K., Maes, B., & Vlaskamp, C. (2007). Operationalizing quality of life for people with profound multiple disabilities: A Delphi study. Journal of Intellectual Disability Research, 51(5), 334–349. doi:10.1111/j.1365-2788.2006.00882.x.

Stone Fish, L., & Busby, D. M. (2005). The Delphi Method. Research methods in family therapy (2nd Ed.) 238–253. The Guilford Press, New York, United States.

Liu, K., Meng, C., Yang, S., & Zhang, G. (2024). Air pollution and individual risk preference: Evidence from China. Energy Economics, 136, 107738. doi:10.1016/j.eneco.2024.107738.

Nimlyat, P. S., Inusa, Y. J., & Nanfel, P. K. (2023). A Literature Review of Indoor Air Quality and Sick Building Syndrome in Office Building Design Environment. Green Building & Construction Economics, 1–18. doi:10.37256/gbce.4120231961.

Wesselink, A. K., Kirwa, K., Hystad, P., Kaufman, J. D., Szpiro, A. A., Willis, M. D., Savitz, D. A., Levy, J. I., Rothman, K. J., Mikkelsen, E. M., Laursen, A. S. D., Hatch, E. E., & Wise, L. A. (2024). Ambient air pollution and rate of spontaneous abortion. Environmental Research, 246, 118067. doi:10.1016/j.envres.2023.118067.

Mei, Y., Christensen, G. M., Li, Z., Waller, L. A., Ebelt, S., Marcus, M., Lah, J. J., Wingo, A. P., Wingo, T. S., & Hüls, A. (2024). Joint effects of air pollution and neighborhood socioeconomic status on cognitive decline - Mediation by depression, high cholesterol levels, and high blood pressure. Science of the Total Environment, 923, 171535. doi:10.1016/j.scitotenv.2024.171535.

Kai, J. Y., Wu, Y. B., Dong, X. X., Miao, Y. F., Li, D. L., Hu, D. N., Lanca, C., Grzybowski, A., & Pan, C. W. (2024). Association between ambient air pollution and dry eye symptoms among Chinese individuals during the COVID-19 pandemic: A national-based study. Science of the Total Environment, 935, 173386. doi:10.1016/j.scitotenv.2024.173386.

Mansor, A. A., Shamsul, S., Abdullah, S., Dom, N. C., Napi, N. N. L. M., Ahmed, A. N., & Ismail, M. (2021). Identification of Indoor Air Quality (IAQ) Sources in Libraries through Principal Component Analysis (PCA). IOP Conference Series: Materials Science and Engineering, 1144(1), 012055. doi:10.1088/1757-899x/1144/1/012055.

Weidman, J. E., Miller, K. R., Christofferson, J. P., & Newitt, J. S. (2011). Best Practices for Dealing with Price Volatility in Commercial Construction. International Journal of Construction Education and Research, 7(4), 276–293. doi:10.1080/15578771.2011.552936.

Skulmoski, J. G., T. Hartman, F., & Krahn, J. (2007). The Delphi Method for Graduate Research. Journal of Information Technology Education: Research, 6(1), 001–021. doi:10.28945/199.

Sourani, A., & Sohail, M. (2015). The Delphi Method: Review and Use in Construction Management Research. International Journal of Construction Education and Research, 11(1), 54–76. doi:10.1080/15578771.2014.917132.

Sandrey, M. A., & Bulger, S. M. (2008). The Delphi Method: An Approach for Facilitating Evidence Based Practice in Athletic Training. Athletic Training Education Journal, 3(4), 135–142. doi:10.4085/1947-380x-3.4.135.

Keeney, S., Hasson, F., & Mckenna, H. (2010). The Delphi Technique in Nursing and Health Research. The Delphi Technique in Nursing and Health Research. Wiley-Blackwell, New Jersey, United States. doi:10.1002/9781444392029.

Keeney, S., Hasson, F., & McKenna, H. (2010). The Delphi Technique in Nursing and Health Research, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781444392029.

Wilhelm, W. (1996). Alchemy of the Oracle : The Delphi Technique. Delta Pi Epsilon Journal, 43(1), 6–27.

Dawson, M. D., & Brucker, P. S. (2001). The utility of the Delphi method in MFT research. American Journal of Family Therapy, 29(2), 125–140. doi:10.1080/01926180126229.

Saha, S., Koley, M., Ganguly, S., Rath, P., Roy Chowdhury, P., & Hossain, S. I. (2014). Developing the criteria for evaluating quality of individualization in homeopathic clinical trial reporting: a preliminary study. Journal of Integrative Medicine, 12(1), 13–19. doi:10.1016/S2095-4964(14)60009-1.

Zhao, Z. G., Cheng, J. Q., Xu, S. L., Hou, W. L., & Richardus, J. H. (2015). A quality assessment index framework for public health services: A Delphi study. Public Health, 129(1), 43–51. doi:10.1016/j.puhe.2014.10.016.

Bryman, A., & Cramer, D. (2002). Quantitative Data Analysis with SPSS Release 10 for Windows. Routledge, London, United Kingdom. doi:10.4324/9780203471548.

Baker, T. L. (1994). Doing Social Research (2nd Ed.). McGraw-Hill Inc, New York, United States.

Simon, M. (2011). Analysis of qualitative data. Dissertation and Scholarly Research: Recipes for Success, Seattle, United States.

Gliem, J. a, & Gliem, R. R. (2003). Calculating, Interpreting, and Reporting Cronbach’s Alpha Reliability Coefficient for Likert-Type Scales. 2003 Midwest Research to Practice Conference in Adult, Continuing, and Community Education, 1992, 82–88. doi:10.1109/PROC.1975.9792.

Sekaran, U. and Bougie, R. (2016) Research Methods for Business: A Skill-Building Approach (7th Ed.). John Wiley & Sons, Hoboken, United States.

Boulkedid, R., Abdoul, H., Loustau, M., Sibony, O., & Alberti, C. (2011). Using and reporting the Delphi method for selecting healthcare quality indicators: A systematic review. PLoS ONE, 6(6), 20476. doi:10.1371/journal.pone.0020476.

Cramer, C. K., Klasser, G. D., Epstein, J. B., & Sheps, S. B. (2008). The Delphi Process in Dental Research. Journal of Evidence-Based Dental Practice, 8(4), 211–220. doi:10.1016/j.jebdp.2008.09.002.

Sumsion, T. (1998). The Delphi Technique: An Adaptive Research Tool. British Journal of Occupational Therapy, 61(4), 153–156. doi:10.1177/030802269806100403.

von der Gracht, H. A. (2012). Consensus measurement in Delphi studies. Review and implications for future quality assurance. Technological Forecasting and Social Change, 79(8), 1525–1536. doi:10.1016/j.techfore.2012.04.013.

Landeta, J. (2006). Current validity of the Delphi method in social sciences. Technological Forecasting and Social Change, 73(5), 467–482. doi:10.1016/j.techfore.2005.09.002.

Hsu, C. C., & Sandford, B. A. (2007). The Delphi technique: making sense of consensus. Practical assessment, research, and evaluation, 12(1).

Soares, D., & Amaral, L. (2011). Information systems interoperability in public administration: Identifying the major acting forces through a Delphi study. Journal of Theoretical and Applied Electronic Commerce Research, 6(1), 61–94. doi:10.4067/S0718-18762011000100006.

Ally, M. (2010). Usage and preference of traditional and alternative payment methods by online consumers in the Australian marketplace. Ph.D. Theis, University of Southern Queensland, Toowoomba, Australia.

Shuib, S. A. S. (2011). Identifying curriculum content for implementing mobile learning in secondary school: A Delphi technique. 3rd International Conference on Education and New Learning Technologies, 4-6 July, 2011, Barcelona, Spain.

Nguyen, T. Q., Nguyen, A. T., Tran, A. L., Le, H. T., Le, H. H. T., & Vu, L. P. (2021). Do workers benefit from on-the-job training? New evidence from matched employer-employee data. Finance Research Letters, 40, 101664. doi:10.1016/j.frl.2020.101664.

Niederberger, M., & Spranger, J. (2020). Delphi technique in health sciences: a map. Frontiers in Public Health, 8, 457. doi:10.3389/fpubh.2020.00457.

Mason, K. J., & Alamdari, F. (2007). EU network carriers, low cost carriers and consumer behaviour: A Delphi study of future trends. Journal of Air Transport Management, 13(5), 299–310. doi:10.1016/j.jairtraman.2007.04.011.

Smart, K. M., Blake, C., Staines, A., & Doody, C. (2010). Clinical indicators of ‘nociceptive’, ‘peripheral neuropathic’ and ‘central’ mechanisms of musculoskeletal pain. A Delphi survey of expert clinicians. Manual Therapy, 15(1), 80–87. doi:10.1016/j.math.2009.07.005.

Hackett, S., Masson, H., & Phillips, S. (2006). Exploring consensus in practice with youth who are sexually abusive: Findings from a delphi study of practitioner views in the United Kingdom and the Republic of Ireland. Child Maltreatment, 11(2), 146–156. doi:10.1177/1077559505285744.

Giannarou, L., & Zervas, E. (2014). Using Delphi technique to build consensus in practice. International Journal of Business Science & Applied Management, 9(2), 65–82. doi:10.69864/ijbsam.9-2.106.

Meijering, J. V., Kampen, J. K., & Tobi, H. (2013). Quantifying the development of agreement among experts in Delphi studies. Technological Forecasting and Social Change, 80(8), 1607–1614. doi:10.1016/j.techfore.2013.01.003.

Li, J., & Yan, X. (2020). Process monitoring using principal component analysis and stacked autoencoder for linear and nonlinear coexisting industrial processes. Journal of the Taiwan Institute of Chemical Engineers, 112, 322–329. doi:10.1016/j.jtice.2020.06.001.

Azevedo, S. G., Govindan, K., Carvalho, H., & Cruz-Machado, V. (2012). An integrated model to assess the leanness and agility of the automotive industry. Resources, Conservation and Recycling, 66, 85–94. doi:10.1016/j.resconrec.2011.12.013.

Graham, C. (2010). Hearing the voices of general staff: A Delphi study of the contributions of general staff to student outcomes. Journal of Higher Education Policy and Management, 32(3), 213–223. doi:10.1080/13600801003743315.

He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z. (2019). Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119(7), 4471–4568. doi:10.1021/acs.chemrev.8b00408.

Abdullah, W. S. W., Osman, M., Kadir, M. Z. A. A., & Verayiah, R. (2019). The potential and status of renewable energy development in Malaysia. Energies, 12(12), 2437. doi:10.3390/en12122437.

Abdullah, S., Imran, M. A., Mansor, A. A., Yusof, K. M. K. K., Dom, N. C., Saijan, S. K., Yatim, S. R. M., Ahmed, A. N., & Ismail, M. (2022). Association of Air Pollutant Index (API) on SARS-CoV-2 of Coronavirus Disease 2019 (COVID-19) in Malaysia. Asian Journal of Atmospheric Environment, 16(1), 1–13. doi:10.5572/ajae.2021.094.

Li, H., You, S., Zhang, H., Zheng, W., Lee, W. ling, Ye, T., & Zou, L. (2018). Analyzing the impact of heating emissions on air quality index based on principal component regression. Journal of Cleaner Production, 171, 1577–1592. doi:10.1016/j.jclepro.2017.10.106.

Bao, Z., Duan, L., Wu, K., & Zhao, C. (2020). An investigation on the heat transfer model for immersed horizontal tube bundles in a pressurized fluidized bed. Applied Thermal Engineering, 170, 115035. doi:10.1016/j.applthermaleng.2020.115035.

Liu, Q., Zhong, W., Tang, R., Yu, H., Gu, J., Zhou, G., & Yu, A. (2021). Experimental tests on co-firing coal and biomass waste fuels in a fluidised bed under oxy-fuel combustion. Fuel, 286, 119312. doi:10.1016/j.fuel.2020.119312.

Bryson, A., Buraimo, B., & Simmons, R. (2011). Do salaries improve worker performance? Labour Economics, 18(4), 424–433. doi:10.1016/j.labeco.2010.12.005.

Cavero-Rubio, J. A., Collazo-Mazón, A., & Amorós-Martínez, A. (2019). Public recognition of gender equality in the workplace and its influence on firms’ performance. Women’s Studies International Forum, 76. doi:10.1016/j.wsif.2019.102273.

Wang, C., Zhang, Y., Shi, Y., Liu, H., Zou, C., Wu, H., & Kang, X. (2017). Research on collaborative control of Hg, As, Pb and Cr by electrostatic-fabric-integrated precipitator and wet flue gas desulphurization in coal-fired power plants. Fuel, 210, 527–534. doi:10.1016/j.fuel.2017.08.108.

Yang, J., Li, Q., Zhao, Y., & Zhang, J. (2019). Trace element emissions from coal-fired power plants. Emission and Control of Trace Elements from Coal-Derived Gas Streams, 227–285. doi:10.1016/B978-0-08-102591-8.00007-6.

Zhou, Y., Zhang, M., Xu, T., & Hui, S. (2009). Effect of opposing tangential primary air jets on the flue gas velocity deviation for large-scale tangentially fired boilers. Energy & Fuels, 23(11), 5375–5382. doi:10.1021/ef900558e.

Liang, Y., Li, Q., Ding, X., Wu, D., Wang, F., Otsuki, T., Cheng, Y., Shen, T., Li, S., & Chen, J. (2020). Forward ultra-low emission for power plants via wet electrostatic precipitators and newly developed demisters: Filterable and condensable particulate matters. Atmospheric Environment, 225, 117372. doi:10.1016/j.atmosenv.2020.117372.

Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., & Khoshnoudi, M. (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renewable and Sustainable Energy Reviews, 70, 1298–1322. doi:10.1016/j.rser.2016.12.030.

Jindal, A., & Nilakantan, R. (2021). Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis. Energy Economics, 93. doi:10.1016/j.eneco.2020.105022.

Lande-Sudall, D., Stallard, T., & Stansby, P. (2019). Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation. Renewable and Sustainable Energy Reviews, 104, 492–503. doi:10.1016/j.rser.2019.01.035.

Almeida, R. K., & Faria, M. (2014). The wage returns to on-the-job training: evidence from matched employer-employee data. IZA Journal of Labor & Development, 3, 1-33. doi:10.1186/2193-9020-3-19.

Roth, C., Wensing, M., Kuzman, M. R., Bjedov, S., Medved, S., Istvanovic, A., ... & Petrea, I. (2021). Experiences of healthcare staff providing community-based mental healthcare as a multidisciplinary community mental health team in Central and Eastern Europe findings from the RECOVER-E project: an observational intervention study. BMC psychiatry, 21, 1-15. doi:10.1186/s12888-021-03542-2.

Cui, L., Li, Y., Tang, Y., Shi, Y., Wang, Q., Yuan, X., & Kellett, J. (2018). Integrated assessment of the environmental and economic effects of an ultra-clean flue gas treatment process in coal-fired power plant. Journal of Cleaner Production, 199, 359–368. doi:10.1016/j.jclepro.2018.07.174.

Liotta, L. F. (2010). Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental, 100(3-4), 403-412. doi:10.1016/j.apcatb.2010.08.023.

Dai, H., Ma, D., Zhu, R., Sun, B., & He, J. (2019). Impact of control measures on nitrogen oxides, sulfur dioxide and particulate matter emissions from coal-fired power plants in Anhui Province, China. Atmosphere, 10(1), 35. doi:10.3390/atmos10010035.

Wu, X., Liu, W., Gao, H., Alfaro, D., Sun, S., Lei, R., Jia, T., & Zheng, M. (2021). Coordinated effects of air pollution control devices on PAH emissions in coal-fired power plants and industrial boilers. Science of the Total Environment, 756, 144063. doi:10.1016/j.scitotenv.2020.144063.

Jiang, Q., Yan, X., & Huang, B. (2019). Review and Perspectives of Data-Driven Distributed Monitoring for Industrial Plant-Wide Processes. Industrial and Engineering Chemistry Research, 58(29), 12899–12912. doi:10.1021/acs.iecr.9b02391.

Sahu, S. K., & Verma, P. (2022). Stacked Auto Encoder Deep Neural Network with Principal Components Analysis for Identification of Chronic Kidney Disease. Machine Learning and Deep Learning Techniques for Medical Science, 385-395. doi:10.1201/9781003217497-19.

Nair, A. N., Anand, P., George, A., & Mondal, N. (2022). A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environmental Research, 213, 113579. doi:10.1016/j.envres.2022.113579.

Sá, J. P., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. V. (2022). Application of the low-cost sensing technology for indoor air quality monitoring: A review. Environmental Technology and Innovation, 28. doi:10.1016/j.eti.2022.102551.

Sadrizadeh, S., Yao, R., Yuan, F., Awbi, H., Bahnfleth, W., Bi, Y., Cao, G., Croitoru, C., de Dear, R., Haghighat, F., Kumar, P., Malayeri, M., Nasiri, F., Ruud, M., Sadeghian, P., Wargocki, P., Xiong, J., Yu, W., & Li, B. (2022). Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering, 57. doi:10.1016/j.jobe.2022.104908.108.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-06

Refbacks

  • There are currently no refbacks.