An Explainable Deep Learning Approach for Classifying Monkeypox Disease by Leveraging Skin Lesion Image Data

Andino Maseleno, Miftachul Huda, Chotirat Ann Ratanamahatana

Abstract


According to the World Health Organization's (WHO) external situation report on the multi-country outbreak of Monkeypox in 2023, from 11 countries in Southeast Asia Regions, Thailand recorded the highest reported cases, totaling 461. The ongoing Monkeypox outbreak has raised significant public health concerns due to its rapid spread across several nations. Early detection and diagnosis are imperative for effectively treating and controlling Monkeypox. Given this context, this study aimed to determine the most efficient model for detecting Monkeypox by employing interpretable deep learning techniques. This study utilizes deep learning techniques to diagnose Monkeypox based on images of skin lesions. We evaluate based on four models—convolutional neural network (CNN), gated recurrent unit (GRU), long short-term memory (LSTM), and bidirectional long short term memory (BiLSTM)—using a publicly available dataset. Additionally, we incorporate Local Interpretable Model-Agnostic Explanations (LIME) and techniques for explainable AI, facilitating visual interpretation of model predictions for healthcare practitioners. The CNN model's performance and LSTM model's performance have an accuracy of 100%, while the GRU model's performance and BiLSTM model's performance have an accuracy of 99.88% and 99.45%. Our findings demonstrate the effectiveness of deep learning models, including the suggested CNN model leveraging the pre-trained MobileNetV2 and LSTM. These models can play a pivotal role in combating the Monkeypox virus.

 

Doi: 10.28991/ESJ-2024-08-05-013

Full Text: PDF


Keywords


Monkeypox; Skin Lesion Analysis; Convolutional Neural Network (CNN); Gated Recurrent Unit (GRU); Long Short Term Memory (LSTM); Bidirectional Long Short Term Memory (BiLSTM); Deep Learning; Explainable Artificial Intelligence.

References


WHO. (2022). WHO Director-General declares the ongoing monkeypox outbreak a Public Health Emergency of International Concern. World Health Organisation, Geneva, Switzerland. Available online: https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern (accessed on May 2024).

WHO. (2023). Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. WHO Director General’s Speeches, World Health Organisation, Geneva, Switzerland.

Sadeuh-Mba, S. A., Yonga, M. G., Els, M., Batejat, C., Eyangoh, S., Caro, V., Etoundi, A., Carniel, E., & Njouom, R. (2019). Monkeypox virus phylogenetic similarities between a human case detected in Cameroon in 2018 and the 2017-2018 outbreak in Nigeria. Infection, Genetics and Evolution, 69, 8–11. doi:10.1016/j.meegid.2019.01.006.

Adler, H., Gould, S., Hine, P., Snell, L. B., Wong, W., Houlihan, C. F., Osborne, J. C., Rampling, T., Beadsworth, M. B., Duncan, C. J., Dunning, J., Fletcher, T. E., Hunter, E. R., Jacobs, M., Khoo, S. H., Newsholme, W., Porter, D., Porter, R. J., Ratcliffe, L., … Hruby, D. E. (2022). Clinical features and management of human monkeypox: a retrospective observational study in the UK. The Lancet Infectious Diseases, 22(8), 1153–1162. doi:10.1016/s1473-3099(22)00228-6.

Girometti, N., Byrne, R., Bracchi, M., Heskin, J., McOwan, A., Tittle, V., Gedela, K., Scott, C., Patel, S., Gohil, J., Nugent, D., Suchak, T., Dickinson, M., Feeney, M., Mora-Peris, B., Stegmann, K., Plaha, K., Davies, G., Moore, L. S. P., … Whitlock, G. (2022). Demographic and clinical characteristics of confirmed human monkeypox virus cases in individuals attending a sexual health centre in London, UK: an observational analysis. The Lancet Infectious Diseases, 22(9), 1321–1328. doi:10.1016/S1473-3099(22)00411-X.

Bryer, J., Freeman, E. E., & Rosenbach, M. (2022). Monkeypox emerges on a global scale: A historical review and dermatologic primer. Journal of the American Academy of Dermatology, 87(5), 1069–1074. doi:10.1016/j.jaad.2022.07.007.

Lai, C. C., Hsu, C. K., Yen, M. Y., Lee, P. I., Ko, W. C., & Hsueh, P. R. (2022). Monkeypox: An emerging global threat during the COVID-19 pandemic. Journal of Microbiology, Immunology and Infection, 55(5), 787–794. doi:10.1016/j.jmii.2022.07.004.

Reynolds, M. G., Yorita, K. L., Kuehnert, M. J., Davidson, W. B., Huhn, G. D., Holman, R. C., & Damon, I. K. (2006). Clinical manifestations of human monkeypox influenced by route of infection. Journal of Infectious Diseases, 194(6), 773–780. doi:10.1086/505880.

Hemati, S., Farhadkhani, M., Sanami, S., & Mohammadi-Moghadam, F. (2022). A review on insights and lessons from COVID-19 to the prevent of monkeypox pandemic. Travel Medicine and Infectious Disease, 50, 102441. doi:10.1016/j.tmaid.2022.102441.

CDC. (2023). 2022-2023 Mpox Outbreak Global Map. Centers for Disease Control and Prevention, Georgia, United States. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html. (accessed on May 2024).

Kasarla, R. R. (2022). Human Monkeypox: An Emerging and Neglected Viral Zoonosis of Public Health Concern. Journal of Universal College of Medical Sciences, 10(01), 1–3. doi:10.3126/jucms.v10i01.47113.

WHO. (2023). Multi-country outbreak of mpox, External situation report #29-20 October 2023. World Health Organisation, Geneva, Switzerland. Available online: https://www.who.int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report-29---20-october-2023 (accessed on May 2024).

WHO. (2023). Multi-country outbreak of mpox, External situation report #28-19 September 2023. World Health Organisation, Geneva, Switzerland. Available online: https://www.who.int/publications/m/item/multicountry-outbreak-of-mpox--external-situation-report-28---19-september-2023 (accessed on May 2024).

Gessain, A., Nakoune, E., & Yazdanpanah, Y. (2022). Monkeypox. New England Journal of Medicine, 387(19), 1783-1793. doi:10.1056/NEJMra2208860.

Nakhaie, M., Arefinia, N., Charostad, J., Bashash, D., Haji Abdolvahab, M., & Zarei, M. (2023). Monkeypox virus diagnosis and laboratory testing. Reviews in medical virology, 33(1), e2404. doi:10.1002/rmv.2404.

Upadhayay, S., Arthur, R., Soni, D., Yadav, P., Navik, U., Singh, R., ... & Kumar, P. (2022). Monkeypox infection: The past, present, and future. International immunopharmacology, 113, 109382. doi:10.1016/j.intimp.2022.109382.

Aljabali, A. A., Obeid, M. A., Nusair, M. B., Hmedat, A., & Tambuwala, M. M. (2022). Monkeypox virus: An emerging epidemic. Microbial Pathogenesis, 173, 105794. doi:10.1016/j.micpath.2022.105794.

Kmiec, D., & Kirchhoff, F. (2022). Monkeypox: a new threat? International Journal of Molecular Sciences, 23(14), 7866. doi:10.3390/ijms23147866.

Hernaez, B., Muñoz-Gómez, A., Sanchiz, A., Orviz, E., Valls-Carbo, A., Sagastagoitia, I., Ayerdi, O., Martín, R., Puerta, T., Vera, M., Cabello, N., Vergas, J., Prieto, C., Pardo-Figuerez, M., Negredo, A., Lagarón, J. M., del Romero, J., Estrada, V., & Alcamí, A. (2023). Monitoring monkeypox virus in saliva and air samples in Spain: a cross-sectional study. The Lancet Microbe, 4(1), e21–e28. doi:10.1016/S2666-5247(22)00291-9.

Petersen, E., Kantele, A., Koopmans, M., Asogun, D., Yinka-Ogunleye, A., Ihekweazu, C., & Zumla, A. (2019). Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infectious Disease Clinics of North America, 33(4), 1027–1043. doi:10.1016/j.idc.2019.03.001.

Altindis, M., Puca, E., & Shapo, L. (2022). Diagnosis of monkeypox virus–An overview. Travel medicine and infectious disease, 50, 102459. doi:10.1016/j.tmaid.2022.102459.

Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2021). Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering, 14, 156–180. doi:10.1109/RBME.2020.3013489.

Ozaydin, B., Berner, E. S., & Cimino, J. J. (2021). Appropriate use of machine learning in healthcare. Intelligence-Based Medicine, 5, 100041. doi:10.1016/j.ibmed.2021.100041.

Naemi, A., Schmidt, T., Mansourvar, M., Naghavi-Behzad, M., Ebrahimi, A., & Wiil, U. K. (2021). Machine learning techniques for mortality prediction in emergency departments: A systematic review. BMJ Open, 11(11), 52663. doi:10.1136/bmjopen-2021-052663.

Sorayaie Azar, A., Naemi, A., Babaei Rikan, S., Bagherzadeh Mohasefi, J., Pirnejad, H., & Wiil, U. K. (2023). Monkeypox detection using deep neural networks. BMC Infectious Diseases, 23(1), 438. doi:10.1186/s12879-023-08408-4.

Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., Foran, D., Do, N., Golemati, S., Kurc, T., Huang, K., Nikita, K. S., Veasey, B. P., Zervakis, M., Saltz, J. H., & Pattichis, C. S. (2020). AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1857. doi:10.1109/JBHI.2020.2991043.

Dash, S., Acharya, B. R., Mittal, M., Abraham, A., & Kelemen, A. (2020). Deep learning techniques for biomedical and health informatics. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-33966-1.

Wang, R., Li, C., Fu, W., & Tang, G. (2020). Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 3814–3827. doi:10.1109/TNNLS.2019.2946414.

Abdelhamid, A. A., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khafaga, D. S., Alharbi, A. H., Ibrahim, A., Eid, M. M., & Saber, M. (2022). Classification of Monkeypox Images Based on Transfer Learning and the Al-Biruni Earth Radius Optimization Algorithm. Mathematics, 10(19), 3614. doi:10.3390/math10193614.

Akin, K.D., Gurkan, C., Budak, A., & Karatas¸ H. (2022). Classification of monkeypox skin lesion using the explainable artificial intelligence assisted convolutional neural networks. European Journal of Science and Technology 2022;(40):106–10. https://doi.org/10.31590/ejosat.1171816.

Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application. Journal of Medical Systems, 46(11). doi:10.1007/s10916-022-01863-7.

Sitaula, C., & Shahi, T. B. (2022). Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches. Journal of Medical Systems, 46(11). doi:10.1007/s10916-022-01868-2.

Nayak, T., Chadaga, K., Sampathila, N., Mayrose, H., Gokulkrishnan, N., Bairy G, M., Prabhu, S., S, S. K., & Umakanth, S. (2023). Deep learning based detection of monkeypox virus using skin lesion images. Medicine in Novel Technology and Devices, 18. doi:10.1016/j.medntd.2023.100243.

Alakus, T. B., & Baykara, M. (2022). Comparison of Monkeypox and Wart DNA Sequences with Deep Learning Model. Applied Sciences (Switzerland), 12(20), 10216. doi:10.3390/app122010216.

Eid, M. M., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abotaleb, M., Alharbi, A. H., Abdelhamid, A. A., Ibrahim, A., Amer, G. M., Kadi, A., & Khafaga, D. S. (2022). Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases. Mathematics, 10(20), 3845. doi:10.3390/math10203845.

Khafaga, D. S., Ibrahim, A., El-Kenawy, E. S. M., Abdelhamid, A. A., Karim, F. K., Mirjalili, S., Khodadadi, N., Lim, W. H., Eid, M. M., & Ghoneim, M. E. (2022). An Al-Biruni Earth Radius Optimization-Based Deep Convolutional Neural Network for Classifying Monkeypox Disease. Diagnostics, 12(11), 2892. doi:10.3390/diagnostics12112892.

Manohar, B., & Das, R. (2022). Artificial Neural Networks for the Prediction of Monkeypox Outbreak. Tropical Medicine and Infectious Disease, 7(12), 424. doi:10.3390/tropicalmed7120424.

Singh, R. K., Pandey, R., & Babu, R. N. (2021). COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays. Neural Computing and Applications, 33(14), 8871–8892. doi:10.1007/s00521-020-05636-6.

Khafaga, D. S., Ibrahim, A., El-Kenawy, E. S. M., Abdelhamid, A. A., Karim, F. K., Mirjalili, S., ... & Ghoneim, M. E. (2022). An Al-Biruni earth radius optimization-based deep convolutional neural network for classifying monkeypox disease. Diagnostics, 12(11), 2892. doi:10.3390/diagnostics12112892.

van der Velden, B. H. M., Kuijf, H. J., Gilhuijs, K. G. A., & Viergever, M. A. (2022). Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470. doi:10.1016/j.media.2022.102470.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier. NAACL-HLT 2016 - 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session, 97–101. doi:10.18653/v1/n16-3020.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision, 128(2), 336–359. doi:10.1007/s11263-019-01228-7.

Kaggle (20224). Data_Monkeypox. Available online: https://www.kaggle.com/datasets/piyush19/monkeypox-dataset (accessed on May 2024).

Lewy, D., & Mańdziuk, J. (2023). An overview of mixing augmentation methods and augmentation strategies. Artificial Intelligence Review, 56(3), 2111–2169. doi:10.1007/s10462-022-10227-z.

Maseleno, A., Kavitha, D., Ashok, K., Al Ansari, M. S., Satheesh, N., & Reddy, R. V. K. (2023). An Ensemble Learning Approach for Multi-Modal Medical Image Fusion using Deep Convolutional Neural Networks. International Journal of Advanced Computer Science and Applications, 14(8), 758–769. doi:10.14569/IJACSA.2023.0140884.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963. doi:10.1007/s10618-019-00619-1.

Miau, S., & Hung, W. H. (2020). River flooding forecasting and anomaly detection based on deep learning. IEEE Access, 8, 198384–198402. doi:10.1109/ACCESS.2020.3034875.

Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., & Tao, X. (2021). Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Scientific Reports, 11(1), 1–26. doi:10.1038/s41598-021-96751-4.

Mittal, A., Kumar, D., Mittal, M., Saba, T., Abunadi, I., Rehman, A., & Roy, S. (2020). Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images. Sensors (Switzerland), 20(4), 1068. doi:10.3390/s20041068.

Ruiz, L., Gama, F., & Ribeiro, A. (2020). Gated Graph Recurrent Neural Networks. IEEE Transactions on Signal Processing, 68, 6303–6318. doi:10.1109/TSP.2020.3033962.

Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Mussaddiq, A., & Kim, S. (2020). A Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware. IEEE Access, 8, 129600–129612. doi:10.1109/ACCESS.2020.3009819.

Gao, S., Zheng, Y., & Guo, X. (2020). Gated recurrent unit-based heart sound analysis for heart failure screening. BioMedical Engineering Online, 19(1), 1–17. doi:10.1186/s12938-020-0747-x.

Zhang, C., Ji, C., Hua, L., Ma, H., Nazir, M. S., & Peng, T. (2022). Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction. Renewable Energy, 197, 668-682. doi:10.1016/j.renene.2022.07.123.

Tian, L., Li, X., Ye, Y., Xie, P., & Li, Y. (2020). A Generative Adversarial Gated Recurrent Unit Model for Precipitation Nowcasting. IEEE Geoscience and Remote Sensing Letters, 17(4), 601–605. doi:10.1109/LGRS.2019.2926776.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.

Vidal, A., & Kristjanpoller, W. (2020). Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 157, 113481. doi:10.1016/j.eswa.2020.113481.

Boulila, W., Ghandorh, H., Khan, M. A., Ahmed, F., & Ahmad, J. (2021). A novel CNN-LSTM-based approach to predict urban expansion. Ecological Informatics, 64, 101325. doi:10.1016/j.ecoinf.2021.101325.

Wang, D., Bai, Y., Wu, C., Li, Y., Shang, C., & Shen, Q. (2022). Convolutional LSTM-Based Hierarchical Feature Fusion for Multispectral Pan-Sharpening. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. doi:10.1109/TGRS.2021.3104221.

Han, M., Chen, W., & Moges, A. D. (2019). Fast image captioning using LSTM. Cluster Computing, 22, 6143–6155. doi:10.1007/s10586-018-1885-9.

Amin, J., Sharif, M., Raza, M., Saba, T., Sial, R., & Shad, S. A. (2020). Brain tumor detection: a long short-term memory (LSTM)-based learning model. Neural Computing and Applications, 32, 15965-15973. doi:10.1007/s00521-019-04650-7.

Islam, M. Z., Islam, M. M., & Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Informatics in Medicine Unlocked, 20, 100412. doi:10.1016/j.imu.2020.100412.

Demir, F. (2021). DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images. Applied Soft Computing, 103, 107160. doi:10.1016/j.asoc.2021.107160.

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235–1270. doi:10.1162/neco_a_01199.

Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica, 67(5), 1471–1481. doi:10.1007/s11600-019-00330-1.

Zhou, D., Zuo, X., & Zhao, Z. (2022). Constructing a Large-Scale Urban Land Subsidence Prediction Method Based on Neural Network Algorithm from the Perspective of Multiple Factors. Remote Sensing, 14(8), 1803. doi:10.3390/rs14081803.

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. Proceedings - IEEE International Conference on Big Data 2019, 3285–3292. doi:10.1109/BigData47090.2019.9005997.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. doi:10.1016/j.neunet.2005.06.042.

Liang, D., Liang, H., Yu, Z., & Zhang, Y. (2020). Deep convolutional BiLSTM fusion network for facial expression recognition. Visual Computer, 36(3), 499–508. doi:10.1007/s00371-019-01636-3.

Yang, L., & Zhao, Q. (2022). A BiLSTM Based Pipeline Leak Detection and Disturbance Assisted Localization Method. IEEE Sensors Journal, 22(1), 611–620. doi:10.1109/JSEN.2021.3128816.

Zhang, P., Yang, Y., & Yin, Z.-Y. (2021). BiLSTM-Based Soil–Structure Interface Modeling. International Journal of Geomechanics, 21(7), 4021096. doi:10.1061/(asce)gm.1943-5622.0002058.

Li, Y. H., Harfiya, L. N., Purwandari, K., & Lin, Y. Der. (2020). Real-time cuffless continuous blood pressure estimation using deep learning model. Sensors (Switzerland), 20(19), 1–19. doi:10.3390/s20195606.

Liu, W., Jing, W., & Li, Y. (2020). Incorporating feature representation into BiLSTM for deceptive review detection. Computing, 102(3), 701–715. doi:10.1007/s00607-019-00763-y.

Jiao, Y., & Du, P. (2016). Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology, 4(4), 320–330. doi:10.1007/s40484-016-0081-2.

Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. G. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. doi:10.1016/j.cmpb.2020.105532.

Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231. doi:10.1016/j.patcog.2019.02.023.

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13. doi:10.1186/s12864-019-6413-7.

Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. doi:10.1016/j.aci.2018.08.003.

Caton, S., & Haas, C. (2024). Fairness in Machine Learning: A Survey. ACM Computing Surveys 56(7), 1-38. doi:10.1145/3616865.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 1–74. doi:10.1186/s40537-021-00444-8.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689 LNCS (Part 1), 818–833. doi:10.1007/978-3-319-10590-1_53.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional networks: Visualising image classification models and saliency maps. 2nd International Conference on Learning Representations, ICLR 2014 - Workshop Track Proceedings, Oxford, United Kingdom.

Koh, P. W., & Liang, P. (2017). Understanding black-box predictions via influence functions. 34th International Conference on Machine Learning, PMLR: 70, 1885-1894.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-05-013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Andino Maseleno, Miftachul Huda, Chotirat Ann Ratanamahatana