An Explainable Deep Learning Approach for Classifying Monkeypox Disease by Leveraging Skin Lesion Image Data
Abstract
Doi: 10.28991/ESJ-2024-08-05-013
Full Text: PDF
Keywords
References
WHO. (2022). WHO Director-General declares the ongoing monkeypox outbreak a Public Health Emergency of International Concern. World Health Organisation, Geneva, Switzerland. Available online: https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern (accessed on May 2024).
WHO. (2023). Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. WHO Director General’s Speeches, World Health Organisation, Geneva, Switzerland.
Sadeuh-Mba, S. A., Yonga, M. G., Els, M., Batejat, C., Eyangoh, S., Caro, V., Etoundi, A., Carniel, E., & Njouom, R. (2019). Monkeypox virus phylogenetic similarities between a human case detected in Cameroon in 2018 and the 2017-2018 outbreak in Nigeria. Infection, Genetics and Evolution, 69, 8–11. doi:10.1016/j.meegid.2019.01.006.
Adler, H., Gould, S., Hine, P., Snell, L. B., Wong, W., Houlihan, C. F., Osborne, J. C., Rampling, T., Beadsworth, M. B., Duncan, C. J., Dunning, J., Fletcher, T. E., Hunter, E. R., Jacobs, M., Khoo, S. H., Newsholme, W., Porter, D., Porter, R. J., Ratcliffe, L., … Hruby, D. E. (2022). Clinical features and management of human monkeypox: a retrospective observational study in the UK. The Lancet Infectious Diseases, 22(8), 1153–1162. doi:10.1016/s1473-3099(22)00228-6.
Girometti, N., Byrne, R., Bracchi, M., Heskin, J., McOwan, A., Tittle, V., Gedela, K., Scott, C., Patel, S., Gohil, J., Nugent, D., Suchak, T., Dickinson, M., Feeney, M., Mora-Peris, B., Stegmann, K., Plaha, K., Davies, G., Moore, L. S. P., … Whitlock, G. (2022). Demographic and clinical characteristics of confirmed human monkeypox virus cases in individuals attending a sexual health centre in London, UK: an observational analysis. The Lancet Infectious Diseases, 22(9), 1321–1328. doi:10.1016/S1473-3099(22)00411-X.
Bryer, J., Freeman, E. E., & Rosenbach, M. (2022). Monkeypox emerges on a global scale: A historical review and dermatologic primer. Journal of the American Academy of Dermatology, 87(5), 1069–1074. doi:10.1016/j.jaad.2022.07.007.
Lai, C. C., Hsu, C. K., Yen, M. Y., Lee, P. I., Ko, W. C., & Hsueh, P. R. (2022). Monkeypox: An emerging global threat during the COVID-19 pandemic. Journal of Microbiology, Immunology and Infection, 55(5), 787–794. doi:10.1016/j.jmii.2022.07.004.
Reynolds, M. G., Yorita, K. L., Kuehnert, M. J., Davidson, W. B., Huhn, G. D., Holman, R. C., & Damon, I. K. (2006). Clinical manifestations of human monkeypox influenced by route of infection. Journal of Infectious Diseases, 194(6), 773–780. doi:10.1086/505880.
Hemati, S., Farhadkhani, M., Sanami, S., & Mohammadi-Moghadam, F. (2022). A review on insights and lessons from COVID-19 to the prevent of monkeypox pandemic. Travel Medicine and Infectious Disease, 50, 102441. doi:10.1016/j.tmaid.2022.102441.
CDC. (2023). 2022-2023 Mpox Outbreak Global Map. Centers for Disease Control and Prevention, Georgia, United States. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html. (accessed on May 2024).
Kasarla, R. R. (2022). Human Monkeypox: An Emerging and Neglected Viral Zoonosis of Public Health Concern. Journal of Universal College of Medical Sciences, 10(01), 1–3. doi:10.3126/jucms.v10i01.47113.
WHO. (2023). Multi-country outbreak of mpox, External situation report #29-20 October 2023. World Health Organisation, Geneva, Switzerland. Available online: https://www.who.int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report-29---20-october-2023 (accessed on May 2024).
WHO. (2023). Multi-country outbreak of mpox, External situation report #28-19 September 2023. World Health Organisation, Geneva, Switzerland. Available online: https://www.who.int/publications/m/item/multicountry-outbreak-of-mpox--external-situation-report-28---19-september-2023 (accessed on May 2024).
Gessain, A., Nakoune, E., & Yazdanpanah, Y. (2022). Monkeypox. New England Journal of Medicine, 387(19), 1783-1793. doi:10.1056/NEJMra2208860.
Nakhaie, M., Arefinia, N., Charostad, J., Bashash, D., Haji Abdolvahab, M., & Zarei, M. (2023). Monkeypox virus diagnosis and laboratory testing. Reviews in medical virology, 33(1), e2404. doi:10.1002/rmv.2404.
Upadhayay, S., Arthur, R., Soni, D., Yadav, P., Navik, U., Singh, R., ... & Kumar, P. (2022). Monkeypox infection: The past, present, and future. International immunopharmacology, 113, 109382. doi:10.1016/j.intimp.2022.109382.
Aljabali, A. A., Obeid, M. A., Nusair, M. B., Hmedat, A., & Tambuwala, M. M. (2022). Monkeypox virus: An emerging epidemic. Microbial Pathogenesis, 173, 105794. doi:10.1016/j.micpath.2022.105794.
Kmiec, D., & Kirchhoff, F. (2022). Monkeypox: a new threat? International Journal of Molecular Sciences, 23(14), 7866. doi:10.3390/ijms23147866.
Hernaez, B., Muñoz-Gómez, A., Sanchiz, A., Orviz, E., Valls-Carbo, A., Sagastagoitia, I., Ayerdi, O., Martín, R., Puerta, T., Vera, M., Cabello, N., Vergas, J., Prieto, C., Pardo-Figuerez, M., Negredo, A., Lagarón, J. M., del Romero, J., Estrada, V., & Alcamí, A. (2023). Monitoring monkeypox virus in saliva and air samples in Spain: a cross-sectional study. The Lancet Microbe, 4(1), e21–e28. doi:10.1016/S2666-5247(22)00291-9.
Petersen, E., Kantele, A., Koopmans, M., Asogun, D., Yinka-Ogunleye, A., Ihekweazu, C., & Zumla, A. (2019). Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infectious Disease Clinics of North America, 33(4), 1027–1043. doi:10.1016/j.idc.2019.03.001.
Altindis, M., Puca, E., & Shapo, L. (2022). Diagnosis of monkeypox virus–An overview. Travel medicine and infectious disease, 50, 102459. doi:10.1016/j.tmaid.2022.102459.
Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2021). Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering, 14, 156–180. doi:10.1109/RBME.2020.3013489.
Ozaydin, B., Berner, E. S., & Cimino, J. J. (2021). Appropriate use of machine learning in healthcare. Intelligence-Based Medicine, 5, 100041. doi:10.1016/j.ibmed.2021.100041.
Naemi, A., Schmidt, T., Mansourvar, M., Naghavi-Behzad, M., Ebrahimi, A., & Wiil, U. K. (2021). Machine learning techniques for mortality prediction in emergency departments: A systematic review. BMJ Open, 11(11), 52663. doi:10.1136/bmjopen-2021-052663.
Sorayaie Azar, A., Naemi, A., Babaei Rikan, S., Bagherzadeh Mohasefi, J., Pirnejad, H., & Wiil, U. K. (2023). Monkeypox detection using deep neural networks. BMC Infectious Diseases, 23(1), 438. doi:10.1186/s12879-023-08408-4.
Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., Foran, D., Do, N., Golemati, S., Kurc, T., Huang, K., Nikita, K. S., Veasey, B. P., Zervakis, M., Saltz, J. H., & Pattichis, C. S. (2020). AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1857. doi:10.1109/JBHI.2020.2991043.
Dash, S., Acharya, B. R., Mittal, M., Abraham, A., & Kelemen, A. (2020). Deep learning techniques for biomedical and health informatics. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-33966-1.
Wang, R., Li, C., Fu, W., & Tang, G. (2020). Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 3814–3827. doi:10.1109/TNNLS.2019.2946414.
Abdelhamid, A. A., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khafaga, D. S., Alharbi, A. H., Ibrahim, A., Eid, M. M., & Saber, M. (2022). Classification of Monkeypox Images Based on Transfer Learning and the Al-Biruni Earth Radius Optimization Algorithm. Mathematics, 10(19), 3614. doi:10.3390/math10193614.
Akin, K.D., Gurkan, C., Budak, A., & Karatas¸ H. (2022). Classification of monkeypox skin lesion using the explainable artificial intelligence assisted convolutional neural networks. European Journal of Science and Technology 2022;(40):106–10. https://doi.org/10.31590/ejosat.1171816.
Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application. Journal of Medical Systems, 46(11). doi:10.1007/s10916-022-01863-7.
Sitaula, C., & Shahi, T. B. (2022). Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches. Journal of Medical Systems, 46(11). doi:10.1007/s10916-022-01868-2.
Nayak, T., Chadaga, K., Sampathila, N., Mayrose, H., Gokulkrishnan, N., Bairy G, M., Prabhu, S., S, S. K., & Umakanth, S. (2023). Deep learning based detection of monkeypox virus using skin lesion images. Medicine in Novel Technology and Devices, 18. doi:10.1016/j.medntd.2023.100243.
Alakus, T. B., & Baykara, M. (2022). Comparison of Monkeypox and Wart DNA Sequences with Deep Learning Model. Applied Sciences (Switzerland), 12(20), 10216. doi:10.3390/app122010216.
Eid, M. M., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abotaleb, M., Alharbi, A. H., Abdelhamid, A. A., Ibrahim, A., Amer, G. M., Kadi, A., & Khafaga, D. S. (2022). Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases. Mathematics, 10(20), 3845. doi:10.3390/math10203845.
Khafaga, D. S., Ibrahim, A., El-Kenawy, E. S. M., Abdelhamid, A. A., Karim, F. K., Mirjalili, S., Khodadadi, N., Lim, W. H., Eid, M. M., & Ghoneim, M. E. (2022). An Al-Biruni Earth Radius Optimization-Based Deep Convolutional Neural Network for Classifying Monkeypox Disease. Diagnostics, 12(11), 2892. doi:10.3390/diagnostics12112892.
Manohar, B., & Das, R. (2022). Artificial Neural Networks for the Prediction of Monkeypox Outbreak. Tropical Medicine and Infectious Disease, 7(12), 424. doi:10.3390/tropicalmed7120424.
Singh, R. K., Pandey, R., & Babu, R. N. (2021). COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays. Neural Computing and Applications, 33(14), 8871–8892. doi:10.1007/s00521-020-05636-6.
Khafaga, D. S., Ibrahim, A., El-Kenawy, E. S. M., Abdelhamid, A. A., Karim, F. K., Mirjalili, S., ... & Ghoneim, M. E. (2022). An Al-Biruni earth radius optimization-based deep convolutional neural network for classifying monkeypox disease. Diagnostics, 12(11), 2892. doi:10.3390/diagnostics12112892.
van der Velden, B. H. M., Kuijf, H. J., Gilhuijs, K. G. A., & Viergever, M. A. (2022). Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470. doi:10.1016/j.media.2022.102470.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Explaining the Predictions of Any Classifier. NAACL-HLT 2016 - 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session, 97–101. doi:10.18653/v1/n16-3020.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision, 128(2), 336–359. doi:10.1007/s11263-019-01228-7.
Kaggle (20224). Data_Monkeypox. Available online: https://www.kaggle.com/datasets/piyush19/monkeypox-dataset (accessed on May 2024).
Lewy, D., & Mańdziuk, J. (2023). An overview of mixing augmentation methods and augmentation strategies. Artificial Intelligence Review, 56(3), 2111–2169. doi:10.1007/s10462-022-10227-z.
Maseleno, A., Kavitha, D., Ashok, K., Al Ansari, M. S., Satheesh, N., & Reddy, R. V. K. (2023). An Ensemble Learning Approach for Multi-Modal Medical Image Fusion using Deep Convolutional Neural Networks. International Journal of Advanced Computer Science and Applications, 14(8), 758–769. doi:10.14569/IJACSA.2023.0140884.
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963. doi:10.1007/s10618-019-00619-1.
Miau, S., & Hung, W. H. (2020). River flooding forecasting and anomaly detection based on deep learning. IEEE Access, 8, 198384–198402. doi:10.1109/ACCESS.2020.3034875.
Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., & Tao, X. (2021). Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Scientific Reports, 11(1), 1–26. doi:10.1038/s41598-021-96751-4.
Mittal, A., Kumar, D., Mittal, M., Saba, T., Abunadi, I., Rehman, A., & Roy, S. (2020). Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images. Sensors (Switzerland), 20(4), 1068. doi:10.3390/s20041068.
Ruiz, L., Gama, F., & Ribeiro, A. (2020). Gated Graph Recurrent Neural Networks. IEEE Transactions on Signal Processing, 68, 6303–6318. doi:10.1109/TSP.2020.3033962.
Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Mussaddiq, A., & Kim, S. (2020). A Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware. IEEE Access, 8, 129600–129612. doi:10.1109/ACCESS.2020.3009819.
Gao, S., Zheng, Y., & Guo, X. (2020). Gated recurrent unit-based heart sound analysis for heart failure screening. BioMedical Engineering Online, 19(1), 1–17. doi:10.1186/s12938-020-0747-x.
Zhang, C., Ji, C., Hua, L., Ma, H., Nazir, M. S., & Peng, T. (2022). Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction. Renewable Energy, 197, 668-682. doi:10.1016/j.renene.2022.07.123.
Tian, L., Li, X., Ye, Y., Xie, P., & Li, Y. (2020). A Generative Adversarial Gated Recurrent Unit Model for Precipitation Nowcasting. IEEE Geoscience and Remote Sensing Letters, 17(4), 601–605. doi:10.1109/LGRS.2019.2926776.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
Vidal, A., & Kristjanpoller, W. (2020). Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 157, 113481. doi:10.1016/j.eswa.2020.113481.
Boulila, W., Ghandorh, H., Khan, M. A., Ahmed, F., & Ahmad, J. (2021). A novel CNN-LSTM-based approach to predict urban expansion. Ecological Informatics, 64, 101325. doi:10.1016/j.ecoinf.2021.101325.
Wang, D., Bai, Y., Wu, C., Li, Y., Shang, C., & Shen, Q. (2022). Convolutional LSTM-Based Hierarchical Feature Fusion for Multispectral Pan-Sharpening. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. doi:10.1109/TGRS.2021.3104221.
Han, M., Chen, W., & Moges, A. D. (2019). Fast image captioning using LSTM. Cluster Computing, 22, 6143–6155. doi:10.1007/s10586-018-1885-9.
Amin, J., Sharif, M., Raza, M., Saba, T., Sial, R., & Shad, S. A. (2020). Brain tumor detection: a long short-term memory (LSTM)-based learning model. Neural Computing and Applications, 32, 15965-15973. doi:10.1007/s00521-019-04650-7.
Islam, M. Z., Islam, M. M., & Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Informatics in Medicine Unlocked, 20, 100412. doi:10.1016/j.imu.2020.100412.
Demir, F. (2021). DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images. Applied Soft Computing, 103, 107160. doi:10.1016/j.asoc.2021.107160.
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235–1270. doi:10.1162/neco_a_01199.
Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica, 67(5), 1471–1481. doi:10.1007/s11600-019-00330-1.
Zhou, D., Zuo, X., & Zhao, Z. (2022). Constructing a Large-Scale Urban Land Subsidence Prediction Method Based on Neural Network Algorithm from the Perspective of Multiple Factors. Remote Sensing, 14(8), 1803. doi:10.3390/rs14081803.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. Proceedings - IEEE International Conference on Big Data 2019, 3285–3292. doi:10.1109/BigData47090.2019.9005997.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. doi:10.1016/j.neunet.2005.06.042.
Liang, D., Liang, H., Yu, Z., & Zhang, Y. (2020). Deep convolutional BiLSTM fusion network for facial expression recognition. Visual Computer, 36(3), 499–508. doi:10.1007/s00371-019-01636-3.
Yang, L., & Zhao, Q. (2022). A BiLSTM Based Pipeline Leak Detection and Disturbance Assisted Localization Method. IEEE Sensors Journal, 22(1), 611–620. doi:10.1109/JSEN.2021.3128816.
Zhang, P., Yang, Y., & Yin, Z.-Y. (2021). BiLSTM-Based Soil–Structure Interface Modeling. International Journal of Geomechanics, 21(7), 4021096. doi:10.1061/(asce)gm.1943-5622.0002058.
Li, Y. H., Harfiya, L. N., Purwandari, K., & Lin, Y. Der. (2020). Real-time cuffless continuous blood pressure estimation using deep learning model. Sensors (Switzerland), 20(19), 1–19. doi:10.3390/s20195606.
Liu, W., Jing, W., & Li, Y. (2020). Incorporating feature representation into BiLSTM for deceptive review detection. Computing, 102(3), 701–715. doi:10.1007/s00607-019-00763-y.
Jiao, Y., & Du, P. (2016). Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology, 4(4), 320–330. doi:10.1007/s40484-016-0081-2.
Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. G. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. doi:10.1016/j.cmpb.2020.105532.
Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231. doi:10.1016/j.patcog.2019.02.023.
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13. doi:10.1186/s12864-019-6413-7.
Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. doi:10.1016/j.aci.2018.08.003.
Caton, S., & Haas, C. (2024). Fairness in Machine Learning: A Survey. ACM Computing Surveys 56(7), 1-38. doi:10.1145/3616865.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 1–74. doi:10.1186/s40537-021-00444-8.
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689 LNCS (Part 1), 818–833. doi:10.1007/978-3-319-10590-1_53.
Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional networks: Visualising image classification models and saliency maps. 2nd International Conference on Learning Representations, ICLR 2014 - Workshop Track Proceedings, Oxford, United Kingdom.
Koh, P. W., & Liang, P. (2017). Understanding black-box predictions via influence functions. 34th International Conference on Machine Learning, PMLR: 70, 1885-1894.
DOI: 10.28991/ESJ-2024-08-05-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Andino Maseleno, Miftachul Huda, Chotirat Ann Ratanamahatana