Effect of One-Time Application of Biochar and Compost on Soil and Maize During 5-Time Consecutive Periods of Crop Cultivation

Saowanee Wijitkosum, Thavivongse Sriburi, Phasita Toonsiri

Abstract


This study evaluates the impact of a single-time biochar application during initial cultivation on the performance of five consecutive crop cycles. The research compares the effects of biochar alone versus biochar combined with soybean compost on maize yield and soil properties over a period of 2.8 years. Fundamental soil properties—including pH, cation exchange capacity, organic matter content, and macronutrient levels—were assessed before each planting cycle and at the end of the fifth cycle. Maize yield and productivity were evaluated based on the number of maize ears, kernel biomass, and both fresh and dry kernel weights. Five experimental plots, each with four replicates, were established with the following treatments: compost applied at 0.56 kg/sq m (TM), cassava stem (CS) biochar applied alone at 2.5 kg/sq m (TB2.5) and 3.0 kg/sq m (TB3.0), and combinations of compost at 0.56 kg/sq m with CS biochar at 2.5 kg/sq m (TMB2.5) and 3.0 kg/sq m (TMB3.0). Results indicated that the sole application of biochar and its combination with compost positively affected soil properties and maize yield. Biochar applications alone significantly improved soil nutrient levels and maize yields compared to the compost alone. Notably, the beneficial effects of biochar on maize and soil were observed from the first cultivation and persisted throughout all five cycles. Based on these findings, it is recommended to apply biochar at 3.0 kg/sq m, in combination with compost at 0.56 kg/sq m, every three crop cycles to sustain nutrient levels and enhance maize yields effectively.

 

Doi: 10.28991/ESJ-2025-09-01-07

Full Text: PDF


Keywords


Biochar; Plant-Available Nutrients; Long-Term Cultivation; Nutrient Retention; Biochar Persistent.

References


United Nations Thailand. (2020). Thai Agricultural Sector: From Problems to Solutions. United Nations in Thailand, Bangkok, Thailand. Available online: https://thailand.un.org/en/103307-thai-agricultural-sector-problems-solutions (accessed on December 2024).

Zhang, J., Zhou, S., Sun, H., Lü, F., & He, P. (2019). Three-year rice grain yield responses to coastal mudflat soil properties amended with straw biochar. Journal of Environmental Management, 239, 23–29. doi:10.1016/j.jenvman.2019.03.022.

Vašák, F., Černý, J., Buráňová, Š., Kulhánek, M., & Balík, J. (2015). Soil pH changes in long-term field experiments with different fertilizing systems. Soil and Water Research, 10(1), 19–23. doi:10.17221/7/2014-SWR.

Iacomino, G., Sarker, T. C., Ippolito, F., Bonanomi, G., Vinale, F., Staropoli, A., & Idbella, M. (2022). Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil. Agronomy, 12(9), 1996. doi:10.3390/agronomy12091996.

Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3(3), 255–281. doi:10.1007/s42773-021-00101-6.

Gunes, A., Inal, A., Taskin, M. B., Sahin, O., Kaya, E. C., & Atakol, A. (2014). Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30(2), 182–188. doi:10.1111/sum.12114.

Hasnat, M., Alam, M. A., Khanam, M., Binte, B. I., Kabir, M. H., Alam, M. S., Kamal, M. Z. U., Rahman, G. K. M. M., Haque, M. M., & Rahman, M. M. (2022). Effect of Nitrogen Fertilizer and Biochar on Organic Matter Mineralization and Carbon Accretion in Soil. Sustainability (Switzerland), 14(6), 3684. doi:10.3390/su14063684.

Liu, X., Wang, H., Liu, C., Sun, B., Zheng, J., Bian, R., Drosos, M., Zhang, X., Li, L., & Pan, G. (2020). Biochar increases maize yield by promoting root growth in the rainfed region. Archives of Agronomy and Soil Science, 67(10), 1–14. doi:10.1080/03650340.2020.1796981.

Wang, Z., Pan, X., Kuang, S., Chen, C., Wang, X., Xu, J., Li, X., Li, H., Zhuang, Q., Zhang, F., & Wang, X. (2022). Amelioration of Coastal Salt-Affected Soils with Biochar, Acid Modified Biochar and Wood Vinegar: Enhanced Nutrient Availability and Bacterial Community Modulation. International Journal of Environmental Research and Public Health, 19(12), 7282. doi:10.3390/ijerph19127282.

Jindo, K., Audette, Y., Higashikawa, F. S., Silva, C. A., Akashi, K., Mastrolonardo, G., Sánchez-Monedero, M. A., & Mondini, C. (2020). Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chemical and Biological Technologies in Agriculture, 7(1), 15. doi:10.1186/s40538-020-00182-8.

Wang, H., Zheng, H., Jiang, Z., Dai, Y., Liu, G., Chen, L., ... & Wang, Z. (2017). Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons. Science of The Total Environment, 593, 124-133. doi:10.1016/j.scitotenv.2017.03.096.

Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8. doi:10.1007/s42773-022-00138-1.

Agbede, T. M., & Adekiya, A. O. (2020). Influence of Biochar on Soil Physicochemical Properties, Erosion Potential, and Maize (Zea mays L.) Grain Yield under Sandy Soil Condition. Communications in Soil Science and Plant Analysis, 51(20), 2559–2568. doi:10.1080/00103624.2020.1845348.

Wijitkosum, S., & Jiwnok, P. (2019). Effect of biochar on Chinese kale and carbon storage in an agricultural area on a high-rise building. AIMS Agriculture and Food, 4(1), 177–193. doi:10.3934/AGRFOOD.2019.1.177.

Murtaza, G., Usman, M., Iqbal, J., Hyder, S., Solangi, F., Iqbal, R., Okla, M. K., Al-Ghamdi, A. A., Elsalahy, H. H., Tariq, W., & Al-Elwany, O. A. A. I. (2024). Liming potential and characteristics of biochar produced from woody and non-woody biomass at different pyrolysis temperatures. Scientific Reports, 14(1), 11469. doi:10.1038/s41598-024-61974-8.

Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., ... & Whitman, T. (2021). Biochar in climate change mitigation. Nature Geoscience, 14(12), 883-892. doi:10.1038/s41561-021-00852-8.

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. doi:10.1007/s42773-020-00067-x.

Wijitkosum, S. (2022). Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. International Soil and Water Conservation Research, 10(2), 335–341. doi:10.1016/j.iswcr.2021.09.006.

Shin, H., Chun, D., Cho, I. R., Hanif, M. A., Kang, S. S., Kwac, L. K., Kim, H. G., & Kim, Y. S. (2024). Systematic Characterization of Cow Manure Biochar and Its Effect on Salicornia herbacea L. Growth. Sustainability (Switzerland), 16(8), 3396. doi:10.3390/su16083396.

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. doi:10.1007/s11157-020-09523-3.

Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z. (Han), & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731–1764. doi:10.1111/gcbb.12885.

Tan, Z., Lin, C. S. K., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied Soil Ecology, 116, 1–11. doi:10.1016/j.apsoil.2017.03.017.

Hassan, M., Liu, Y., Naidu, R., Parikh, S. J., Du, J., Qi, F., & Willett, I. R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 744, 140714. doi:10.1016/j.scitotenv.2020.140714.

Gezahegn, S., Sain, M., & Thomas, S. C. (2019). Variation in feedstock wood chemistry strongly influences biochar liming potential. Soil Systems, 3(2), 1–16. doi:10.3390/soilsystems3020026.

Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 7419. doi:10.1038/s41598-021-86701-5.

Figueredo, N. A. de, Costa, L. M. da, Melo, L. C. A., Siebeneichlerd, E. A., & Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica, 48(3), 403. doi:10.5935/1806-6690.20170046.

Rathnayake, D., Schmidt, H. P., Leifeld, J., Mayer, J., Epper, C. A., Bucheli, T. D., & Hagemann, N. (2023). Biochar from animal manure: A critical assessment on technical feasibility, economic viability, and ecological impact. GCB Bioenergy, 15(9), 1078–1104. doi:10.1111/gcbb.13082.

Moragues-Saitua, L., Arias-González, A., Blanco, F., Benito-Carnero, G., & Gartzia-Bengoetxea, N. (2023). Effects of biochar and wood ash amendments in the soil-water-plant environment of two temperate forest plantations. Frontiers in Forests and Global Change, 5, 878217. doi:10.3389/ffgc.2022.878217.

Adekiya, A. O., Adebiyi, O. V., Ibaba, A. L., Aremu, C., & Ajibade, R. O. (2022). Effects of wood biochar and potassium fertilizer on soil properties, growth and yield of sweet potato (Ipomea batata). Heliyon, 8(11), e11728. doi:10.1016/j.heliyon.2022.e11728.

Sun, Z., Hu, Y., Shi, L., Li, G., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68(6), 272–289. doi:10.17221/522/2021-PSE.

El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. doi:10.1016/j.geoderma.2018.09.034.

Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1), 12249. doi:10.1038/s41598-020-69262-x.

Wu, S., Zhang, Y., Tan, Q., Sun, X., Wei, W., & Hu, C. (2020). Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Science of the Total Environment, 714, 136722. doi:10.1016/j.scitotenv.2020.136722.

Wang, Y., Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110(1), 375–381. doi:10.1016/j.jaap.2014.10.006.

Tang, E., Liao, W., & Thomas, S. C. (2023). Optimizing Biochar Particle Size for Plant Growth and Mitigation of Soil Salinization. Agronomy, 13(5), 1394. doi:10.3390/agronomy13051394.

Doulgeris, C., Kypritidou, Z., Kinigopoulou, V., & Hatzigiannakis, E. (2023). Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil. Agronomy, 13(3), 784. doi:10.3390/agronomy13030784.

Nguyen, T. T. N., Xu, C. Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, H. M., & Bai, S. H. (2017). Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79–96. doi:10.1016/j.geoderma.2016.11.004.

Li, X., Wu, D., Liu, X., Huang, Y., Cai, A., Xu, H., Ran, J., Xiao, J., & Zhang, W. (2024). A global dataset of biochar application effects on crop yield, soil properties, and greenhouse gas emissions. Scientific Data, 11(1), 57. doi:10.1038/s41597-023-02867-9.

Kharel, G., Sacko, O., Feng, X., Morris, J. R., Phillips, C. L., Trippe, K., Kumar, S., & Lee, J. W. (2019). Biochar Surface Oxygenation by Ozonization for Super High Cation Exchange Capacity. ACS Sustainable Chemistry & Engineering, 7(19), 16410–16418. doi:10.1021/acssuschemeng.9b03536.

Fidel, R. B., Laird, D. A., & Spokas, K. A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8(1), 17627. doi:10.1038/s41598-018-35534-w.

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. doi:10.1007/s42773-020-00065-z.

Šimanský, V., Horák, J., Igaz, D., Balashov, E., & Jonczak, J. (2018). Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. Journal of Soils and Sediments, 18(4), 1432–1440. doi:10.1007/s11368-017-1886-y.

Olmo, M., Villar, R., Salazar, P., & Alburquerque, J. A. (2016). Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant and Soil, 399(1–2), 333–343. doi:10.1007/s11104-015-2700-5.

Joseph, S., Pow, D., Dawson, K., Rust, J., Munroe, P., Taherymoosavi, S., Mitchell, D. R. G., Robb, S., & Solaiman, Z. M. (2020). Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Science of the Total Environment, 724, 138153. doi:10.1016/j.scitotenv.2020.138153.

Li, M., Wang, Y., Liu, M., Liu, Q., Xie, Z., Li, Z., Uchimiya, M., & Chen, Y. (2019). Three‐Year Field Observation of Biochar‐Mediated Changes in Soil Organic Carbon and Microbial Activity. Journal of Environmental Quality, 48(3), 717–726. doi:10.2134/jeq2018.10.0354.

Qi, S., Yang, S., Lin, X., Hu, J., Jiang, Z., & Xu, Y. (2023). The long-term effectiveness of biochar in increasing phosphorus availability and reducing its release risk to the environment in water-saving irrigated paddy fields. Agricultural Water Management, 282. doi:10.1016/j.agwat.2023.108295.

Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993. doi:10.3390/agronomy11050993.

Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2018). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation & Development, 29(7), 2124–2161. doi:10.1002/ldr.2829.

Obia, A., Mulder, J., Hale, S. E., Nurida, N. L., & Cornelissen, G. (2018). The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS ONE, 13(5), 196794. doi:10.1371/journal.pone.0196794.

Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., Iqbal, H., Waqas, M., Tariq, A., Wu, Y., Zhang, Z., & Ditta, A. (2021). Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition, 1–15. doi:10.1080/01904167.2021.1871746.

Huang, K., Zhang, J., Tang, G., Bao, D., Wang, T., & Kong, D. (2023). Impacts and mechanisms of biochar on soil microorganisms. Plant, Soil and Environment, 69(2), 45–54. doi:10.17221/348/2022-PSE.

Xu, N., Tan, G., Wang, H., & Gai, X. (2016). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 74, 1–8. doi:10.1016/j.ejsobi.2016.02.004.

Sun, Q., Liu, Y., Liu, H., & Dumroese, R. K. (2020). Interaction of biochar type and rhizobia inoculation increases the growth and biological nitrogen fixation of robinia pseudoacacia seedlings. Forests, 11(6), 711. doi:10.3390/f11060711.

Adekiya, A. O., Agbede, T. M., Olayanju, A., Ejue, W. S., Adekanye, T. A., Adenusi, T. T., & Ayeni, J. F. (2020). Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. The Scientific World Journal, 2020(1), 9391630. doi:10.1155/2020/9391630.

Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. doi:10.1007/s11368-019-02264-z.

Joseph, S., Husson, O., Graber, E. R., Van Zwieten, L., Taherymoosavi, S., Thomas, T., Nielsen, S., Ye, J., Pan, G., Chia, C., Munroe, P., Allen, J., Lin, Y., Fan, X., & Donne, S. (2015). The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy, 5(3), 322–340. doi:10.3390/agronomy5030322.

Bo, X., Zhang, Z., Wang, J., Guo, S., Li, Z., Lin, H., Huang, Y., Han, Z., Kuzyakov, Y., & Zou, J. (2023). Benefits and limitations of biochar for climate-smart agriculture: a review and case study from China. Biochar, 5(1), 77. doi:10.1007/s42773-023-00279-x.

Schulz, H., Dunst, G., & Glaser, B. (2013). Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817–827. doi:10.1007/s13593-013-0150-0.

Jiang, Y., Li, T., Xu, X., Sun, J., Pan, G., & Cheng, K. (2024). A global assessment of the long-term effects of biochar application on crop yield. Current Research in Environmental Sustainability, 7. doi:10.1016/j.crsust.2024.100247.

Masud, M. M., Al-Baquy, M. A., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, 110865. doi:10.1016/j.ecoenv.2020.110865.

Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 53001. doi:10.1088/1748-9326/aa67bd.

Mannan, M. A., Mia, S., Halder, E., & Dijkstra, F. A. (2021). Biochar application rate does not improve plant water availability in soybean under drought stress. Agricultural Water Management, 253, 106940. doi:10.1016/j.agwat.2021.106940.

Massaccesi, L., Nogués, I., Mazzurco Miritana, V., Passatore, L., Zacchini, M., Pietrini, F., Carloni, S., Marabottini, R., Moscatelli, M. C., & Marinari, S. (2024). Short-term effects of biochar and compost on soil microbial community, C and N cycling, and lettuce (Lactuca sativa L.) yield in a Mediterranean environment. Applied Soil Ecology, 199. doi:10.1016/j.apsoil.2024.105411.

Wijitkosum, S., & Sriburi, T. (2019). Increasing the Amount of Biomass in Field Crops for Carbon Sequestration and Plant Biomass Enhancement Using Biochar. Biochar - An Imperative Amendment for Soil and the Environment. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.82090.

Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. (2020). Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use and Management, 36(1), 2–18. doi:10.1111/sum.12546.

Regmi, A., Singh, S., Moustaid-Moussa, N., Coldren, C., & Simpson, C. (2022). The Negative Effects of High Rates of Biochar on Violas Can Be Counteracted with Fertilizer. Plants, 11(4), 491. doi:10.3390/plants11040491.

Olszyk, D., Shiroyama, T., Novak, J., Cantrell, K., Sigua, G., Watts, D., & Johnson, M. G. (2020). Biochar affects growth and shoot nitrogen in four crops for two soils. Agrosystems, Geosciences & Environment, 3(1), e20067. doi:10.1002/agg2.20067.

Wang, Y., Villamil, M. B., Davidson, P. C., & Akdeniz, N. (2019). A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of The Total Environment, 685, 741–752. doi:10.1016/j.scitotenv.2019.06.244.

Teodoro, M., Trakal, L., Gallagher, B. N., Šimek, P., Soudek, P., Pohořelý, M., Beesley, L., Jačka, L., Kovář, M., Seyedsadr, S., & Mohan, D. (2020). Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere, 242, 125255. doi:10.1016/j.chemosphere.2019.125255.

Keller, L., Idowu, O. J., Ulery, A., Omer, M., & Brewer, C. E. (2023). Short-Term Biochar Impacts on Crop Performance and Soil Quality in Arid Sandy Loam Soil. Agriculture (Switzerland), 13(4), 782. doi:10.3390/agriculture13040782.

Li, C., Xiong, Y., Qu, Z., Xu, X., Huang, Q., & Huang, G. (2018). Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma, 331, 100–108. doi:10.1016/j.geoderma.2018.06.014.

Omara, P., Singh, H., Singh, K., Sharma, L., Otim, F., & Obia, A. (2023). Short-term effect of field application of biochar on cation exchange capacity, pH, and electrical conductivity of sandy and clay loam temperate soils. Technology in Agronomy, 3(1), 0–0. doi:10.48130/tia-2023-0016.

Zhang, M., Riaz, M., Xia, H., Li, Y., Wang, X., & Jiang, C. (2022). Four-year biochar study: Positive response of acidic soil microenvironment and citrus growth to biochar under potassium deficiency conditions. Science of the Total Environment, 813, 152515. doi:10.1016/j.scitotenv.2021.152515.

Kalu, S., Simojoki, A., Karhu, K., & Tammeorg, P. (2021). Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils. Agriculture, Ecosystems & Environment, 316, 107454. doi:10.1016/j.agee.2021.107454.

Jarosz, R., Mierzwa-Hersztek, M., Gondek, K., Kopeć, M., Lošák, T., & Marcińska-Mazur, L. (2022). Changes in quantity and quality of organic matter in soil after application of poultry litter and poultry litter biochar—5-year field experiment. Biomass Conversion and Biorefinery, 12(7), 2925–2934. doi:10.1007/s13399-020-01005-4.

Rombolà, A. G., Fabbri, D., Baronti, S., Vaccari, F. P., Genesio, L., & Miglietta, F. (2019). Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere, 219, 662–670. doi:10.1016/j.chemosphere.2018.11.178.

Cong, M., Hu, Y., Sun, X., Yan, H., Yu, G., Tang, G., Chen, S., Xu, W., & Jia, H. (2023). Long-term effects of biochar application on the growth and physiological characteristics of maize. Frontiers in Plant Science, 14, 1172425. doi:10.3389/fpls.2023.1172425.

Bai, X., Zhang, S., Shao, J., Chen, A., Jiang, J., Chen, A., & Luo, S. (2022). Exploring the negative effects of biochars on the germination, growth, and antioxidant system of rice and corn. Journal of Environmental Chemical Engineering, 10(3), 107398. doi:10.1016/j.jece.2022.107398.

NRCS. (2014). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, Version 2.0. R. Burt and Soil Survey Staff (ed.), Natural Resources Conservation Service, United States Department of Agriculture, Washington, United States. Available online: https://www.nrcs.usda.gov/sites/default/files/2023-01/SSIR51.pdf (accessed on December 2024).

Domingues, R. R., Sánchez-Monedero, M. A., Spokas, K. A., Melo, L. C. A., Trugilho, P. F., Valenciano, M. N., & Silva, C. A. (2020). Enhancing cation exchange capacity ofweathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy, 10(6), 824. doi:10.3390/agronomy10060824.

Gavlak, R., Horneck, D., & Miller, R. O. (2005). Soil, plant and water reference methods for the western region (3rd Ed.). WCC-103 Publication, Fort Collins, United States.

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—Total. Methods of Soil Analysis, 595–624, John Wiley & Sons, Hoboken, United States. doi:10.2134/agronmonogr9.2.2ed.c31.

Jackson, M. L. (1973). Soil chemical analysis. Prentice-Hall of India Pvt., New Delhi, India.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-07

Refbacks

  • There are currently no refbacks.