Comparative Analysis of ARIMA, Prophet, and Glmnet for Long Term Evolution (LTE) Base Station Traffic Forecasting
Abstract
Doi: 10.28991/ESJ-2024-08-06-04
Full Text: PDF
Keywords
References
Thanawala, R., El-Sayed, M., Morawski, T., Mukhopadhyay, A., Zhao, J., & Urrutia-Valdés, C. (2010). The mobile data explosion and new approaches to network planning and monetization. Proceedings of 2010 14th International Telecommunications Network Strategy and Planning Symposium, Networks, Warsaw, Poland. doi:10.1109/NETWKS.2010.5624926.
Jiang, W. (2022). Cellular traffic prediction with machine learning: A survey. Expert Systems with Applications, 201(April), 117163. doi:10.1016/j.eswa.2022.117163.
Li, R., Zhao, Z., Zheng, J., Mei, C., Cai, Y., & Zhang, H. (2017). The Learning and Prediction of Application-Level Traffic Data in Cellular Networks. IEEE Transactions on Wireless Communications, 16(6), 3899–3912. doi:10.1109/TWC.2017.2689772.
Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). On accurate simulations of LTE femtocells using an open source simulator. Eurasip Journal on Wireless Communications and Networking, 1-13. doi:10.1186/1687-1499-2012-328.
Zheng, Y. L., Zhang, L. P., Zhang, X. L., Wang, K., & Zheng, Y. J. (2015). Forecast model analysis for the morbidity of tuberculosis in Xinjiang, China. PLoS ONE, 10(3), 116832. doi:10.1371/journal.pone.0116832.
Liu, Q., Liu, X., Jiang, B., & Yang, W. (2011). Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infectious Diseases, 11(1), 1-7. doi:10.1186/1471-2334-11-218.
Kumar, S. V., & Vanajakshi, L. (2015). Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Research Review, 7(3), 1-9. doi:10.1007/s12544-015-0170-8.
Hjort Kure, E. H., Engelstad, P., Maharjan, S., Gjessing, S., Zhang, X., & Zhang, Y. (2018). Energy Usage Forecasting for LTE: A Network-Wide Traffic Measurements Study. IEEE Globecom Workshops, GC Wkshps 2018 – Proceedings, Abu Dhabi, United Arab Emirates. doi:10.1109/GLOCOMW.2018.8644423.
Lo Schiavo, L., Fiore, M., Gramaglia, M., Banchs, A., & Costa-Perez, X. (2022). Forecasting for Network Management with Joint Statistical Modelling and Machine Learning. In Proceedings - IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2022, 60–69. doi:10.1109/WoWMoM54355.2022.00028.
Zhu, X., Yang, Z., Liu, G., Li, Y., Xu, L., Cheng, X., & Dong, R. (2022, July). Cell Expansion Priority Recommendation Based on Prophet Algorithm. In Signal and Information Processing, Networking and Computers: Proceedings of the 8th International Conference on Signal and Information Processing, Networking and Computers (ICSINC), 1449-1457. doi:10.1007/978-981-19-3387-5_172.
Jain, G., & Prasad, R. R. (2020). Machine learning, Prophet and XGBoost algorithm: Analysis of Traffic Forecasting in Telecom Networks with time series data. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 893–897. doi:10.1109/ICRITO48877.2020.9197864.
Dou, R., & Meng, F. (2022). Prophet-LSTM combination model carbon trading price prediction research. Proceedings Volume 12474, Second International Symposium on Computer Technology and Information Science (ISCTIS 2022); 124741W. doi:10.1117/12.2653785.
Duarte, D., & Faerman, J. (2019). Comparison of Time Series Prediction of Healthcare Emergency Department Indicators with ARIMA and Prophet, 123–133. doi:10.5121/csit.2019.91810.
Kochetkova, I., Kushchazli, A., Burtseva, S., & Gorshenin, A. (2023). Short-Term Mobile Network Traffic Forecasting Using Seasonal ARIMA and Holt-Winters Models. Future Internet, 15(9), 1–15. doi:10.3390/fi15090290.
Dongchen, Z., Shoufeng, W., Xiaoyan, X., Xingzheng, L., Wenwen, Y., & Tinglan, W. (2014). A novel long term traffic forecast algorithm and case study for china. Proceedings - 2014 IEEE 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE WAINA 2014, 425–430. doi:10.1109/WAINA.2014.69.
Gu, J., Ruan, Y., Chen, X., & Wang, C. (2012). A novel traffic capacity planning methodology for LTE radio network dimensioning. IET Conference Publications, 2011(586 CP), 462–466. doi:10.1049/cp.2011.0711.
Cho, C., & Lee, S. (2012). Mobile broadband traffic forecasts in Korea. In DCNET 2012, ICE-B 2012, OPTICS 2012 - Proceedings of the International Conference on Data Communication Networking, e-Business and Optical Communication Systems, ICETE2012, 41–45. doi:10.5220/0004066200410045.
Yu, L., Li, M., Jin, W., Guo, Y., Wang, Q., Yan, F., & Li, P. (2021). STEP: A Spatio-Temporal Fine-Granular User Traffic Prediction System for Cellular Networks. IEEE Transactions on Mobile Computing, 20(12), 3453–3466. doi:10.1109/TMC.2020.3001225.
Rizwan, A., Arshad, K., Fioranelli, F., Imran, A., & Imran, M. A. (2018). Mobile Internet Activity Estimation and Analysis at High Granularity: SVR Model Approach. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC (Vols. 2018-September), Bologna, Italy. doi:10.1109/PIMRC.2018.8581040.
Huang, C. W., & Chen, P. C. (2020). Joint demand forecasting and DQN-Based control for energy-aware mobile traffic offloading. IEEE Access, 8, 66588–66597. doi:10.1109/ACCESS.2020.2985679.
Nayak, N., & R, R. S. (2021). 5G Traffic Prediction with Time Series Analysis. International Journal of Innovative Technology and Exploring Engineering, 10(12), 36–40. doi:10.35940/ijitee.l9555.10101221.
Köppelová, J., & Jindrová, A. (2019). Application of exponential smoothing models and ARIMA models in time series analysis from telco area. Agris On-Line Papers in Economics and Informatics, 11(3), 73–84. doi:10.7160/aol.2019.110307.
Mahdy, B., Abbas, H., Hassanein, H. S., Noureldin, A., & Abou-Zeid, H. (2020). A clustering-driven approach to predict the traffic load of mobile networks for the analysis of base stations deployment. Journal of Sensor and Actuator Networks, 9(4), 53. doi:10.3390/jsan9040053.
Lv, T., Wu, Y., & Zhang, L. (2021). A Traffic Interval Prediction Method Based on ARIMA. Journal of Physics: Conference Series, 1880(1). doi:10.1088/1742-6596/1880/1/012031.
Lee, D., Lee, D., Choi, M., & Lee, J. (2020). Prediction of Network Throughput using ARIMA. 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020, 1–5. doi:10.1109/ICAIIC48513.2020.9065083.
Suarez, C. A. H., Parra, O. J. S., & Díaz, A. E. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingenieria e Investigacion, 29(2), 65–69. doi:10.15446/ing.investig.v29n2.15163.
Huang, C. W., Chiang, C. T., & Li, Q. (2017). A study of deep learning networks on mobile traffic forecasting. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2017-October, 1–6. doi:10.1109/PIMRC.2017.8292737.
Prajam, S., Wechtaisong, C., & Khan, A. A. (2022). Applying Machine Learning Approaches for Network Traffic Forecasting. Indian Journal of Computer Science and Engineering, 13(2), 324–335. doi:10.21817/indjcse/2022/v13i2/221302188.
Zheng, J., & Huang, M. (2020). Traffic flow forecast through time series analysis based on deep learning. IEEE Access, 8, 82562–82570. doi:10.1109/ACCESS.2020.2990738.
Kaur, G., Grewal, S. K., & Jain, A. (2024). Federated Learning Based Spatio-Temporal Framework for Real-Time Traffic Prediction. Wireless Personal Communications, 136(2), 849–865. doi:10.1007/s11277-024-11292-z.
Yang, S., Wu, J., Du, Y., He, Y., & Chen, X. (2017). Ensemble Learning for Short-Term Traffic Prediction Based on Gradient Boosting Machine. Journal of Sensors, 2017, 1–15. doi:10.1155/2017/7074143.
Wu, Q., Chen, X., Zhou, Z., Chen, L., & Zhang, J. (2021). Deep reinforcement learning with spatio-temporal traffic forecasting for data-driven base station sleep control. IEEE/ACM2021 Transactions on Networking, 29(2), 935–948. doi:10.1109/TNET.2021.3053771.
Zhao, J., Qu, H., Zhao, J., Dai, H., & Jiang, D. (2020). Spatiotemporal graph convolutional recurrent networks for traffic matrix prediction. Transactions on Emerging Telecommunications Technologies, 31(11), e4056. doi:10.1002/ett.4056.
Zhao, L., Huang, Y., Wang, Y., Xu, Y., Feng, Q., & Chen, E. (2023). Base Station Traffic Prediction based on Feature Selection and Stacking Ensemble Learning. ACM International Conference Proceeding Series, 113–117. doi:10.1145/3603781.3603800.
Sudhakaran, S., Venkatagiri, A., Taukari, P. A., Jeganathan, A., & Muthuchidambaranathan, P. (2020). Metropolitan Cellular Traffic Prediction Using Deep Learning Techniques. 2020 IEEE International Conference on Communication, Networks and Satellite, Comnetsat 2020 - Proceedings, 106–110. doi:10.1109/Comnetsat50391.2020.9328937.
Clemente, D., Soares, G., Fernandes, D., Cortesao, R., Sebastiao, P., & Ferreira, L. S. (2019). Traffic forecast in mobile networks: Classification system using machine learning. IEEE Vehicular Technology Conference, 2019-September, Honolulu, United States. doi:10.1109/VTCFall.2019.8891348.
Fang, W. X., Lan, P. C., Lin, W. R., Chang, H. C., Chang, H. Y., & Wang, Y. H. (2019). Combine Facebook Prophet and LSTM with BPNN Forecasting financial markets: The Morgan Taiwan Index. Proceedings - 2019 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2019, 4–5. doi:10.1109/ISPACS48206.2019.8986377.
Wang, H., Liu, S., Sun, C., Li, Z., & Jiang, X. (2022). Short term prediction of cell uplink and downlink traffic based on Prophet algorithm. ACM International Conference Proceeding Series, 419–423. doi:10.1145/3558819.3565118.
Xiao, H., Zhao, Y., & Zhang, H. (2023). Predict Vessel Traffic with Weather Conditions Based on Multimodal Deep Learning. Journal of Marine Science and Engineering, 11(1), 39. doi:10.3390/jmse11010039.
Tan, H. (2023). A Novel Approach to Wireless Network Traffic Prediction using CNN-LSTM Attention Model with Prophet Model. Proceedings - 2023 2nd International Conference on Machine Learning, Cloud Computing, and Intelligent Mining, MLCCIM 2023, MLCCIM 2023, 285–292. doi:10.1109/MLCCIM60412.2023.00047.
Wei, X., Liu, Z., Li, M., & He, X. (2023). Application of Prophet Model in Traffic Matrix Prediction for IP Backbone Network. 2023 8th International Conference on Intelligent Computing and Signal Processing, ICSP 2023, 136–140. doi:10.1109/ICSP58490.2023.10248446.
Mohammadjafari, S., Roginsky, S., Kavurmacioglu, E., Cevik, M., Ethier, J., & Bener, A. B. (2020). Machine Learning-Based Radio Coverage Prediction in Urban Environments. IEEE Transactions on Network and Service Management, 17(4), 2117–2130. doi:10.1109/TNSM.2020.3035442.
Azari, A., Papapetrou, P., Denic, S., & Peters, G. (2019). Cellular Traffic Prediction and Classification: A Comparative Evaluation of LSTM and ARIMA. In P. Kralj Novak, T. Šmuc, & S. Džeroski (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11828 LNAI, 129–144. doi:10.1007/978-3-030-33778-0_11.
Santos Escriche, E., Vassaki, S., & Peters, G. (2023). A comparative study of cellular traffic prediction mechanisms. Wireless Networks, 29(5), 2371–2389. doi:10.1007/s11276-023-03313-9.
Mehri, H., Chen, H., & Mehrpouyan, H. (2024). Cellular Traffic Prediction Using Online Prediction Algorithms. arXiv Preprint arXiv:2405.05239. doi:10.48550/arXiv.2405.05239.
Perifanis, V., Pavlidis, N., Koutsiamanis, R. A., & Efraimidis, P. S. (2023). Federated learning for 5G base station traffic forecasting. Computer Networks, 235, 1389–1286. doi:10.1016/j.comnet.2023.109950.
Wang, Y. (2022). Base Station Mobile Traffic Prediction Based on ARIMA and LSTM Model. Lecture Notes in Electrical Engineering: Vol. 797 LNEE, 164–175. doi:10.1007/978-981-16-5692-7_18.
Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2018). A Comparison of ARIMA and LSTM in Forecasting Time Series. Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, 1394–1401. doi:10.1109/ICMLA.2018.00227.
Xu, M., Wang, Q., & Lin, Q. (2018). Hybrid holiday traffic predictions in cellular networks. IEEE/IFIP Network Operations and Management Symposium: Cognitive Management in a Cyber World, NOMS 2018, 1–6. doi:10.1109/NOMS.2018.8406291.
Bangroo, R., Verma, S. R., Shivangi, & Shakuntala. (2023). Comparative Study of Elastic Net Regression, Naive Bayes & Lasso Regression. IEEE International Conference on Electrical, Electronics, Communication and Computers, ELEXCOM 2023, 1–6. doi:10.1109/ELEXCOM58812.2023.10370433.
Garg, R., & Barpanda, S. (2022). Machine learning algorithms for time series analysis and forecasting. arXiv preprint arXiv:2211.14387. doi:10.48550/arXiv.2211.14387.
DOI: 10.28991/ESJ-2024-08-06-04
Refbacks
- There are currently no refbacks.