Development of a Cloud Service for Comprehensive Research of Polymer Synthesis Processes
Abstract
Doi: 10.28991/ESJ-2024-08-06-023
Full Text: PDF
Keywords
References
Podvalny, S. L., Belyanin, A. M., Tikhomirov, S. G., & Khvostov, A. A. (2016). Simulating dynamic modes of polymer synthesis, based on the method of moments for multimodal distributions. Bulletin of the Russian Academy of Sciences: Physics, 80(9), 1150–1151. doi:10.3103/S1062873816090379.
Ulitin, N. V., Nasyrov, I. I., Deberdeev, T. R., & Berlin, A. A. (2012). Kinetic approach to modeling the radical polymerization of butyl acrylate in the presence dibenzyl trithiocarbonate. Russian Journal of Physical Chemistry B, 6(6), 761–768. doi:10.1134/S1990793112060218.
Miftakhov, E. N., Nasyrov, I. S., Mustafina, S. A., & Zakharov, V. P. (2021). Study of Kinetics of Isoprene Polymerization in the Presence of Neodymium-Containing Catalytic Systems Modified in Turbulent Flows. Russian Journal of Applied Chemistry, 94(1), 77–83. doi:10.1134/S1070427221010110.
Mavrantzas, V. G. (2021). Using Monte Carlo to Simulate Complex Polymer Systems: Recent Progress and Outlook. Frontiers in Physics, 9. doi:10.3389/fphy.2021.661367.
Yang, B., Liu, S., Ma, J., Yang, Y., Li, J., Jiang, B. P., Ji, S., & Shen, X. C. (2022). Monte Carlo Simulation of Surface-Initiated Polymerization: Heterogeneous Reaction Environment. Macromolecules, 55(6), 1970–1980. doi:10.1021/acs.macromol.1c02575.
Huang, Z., Gu, C., Li, J., Xiang, P., Liao, Y., Jiang, B. P., Ji, S., & Shen, X. C. (2024). Surface-Initiated Polymerization with an Initiator Gradient: A Monte Carlo Simulation. Polymers, 16(9), 1203. doi:10.3390/polym16091203.
Tippur, H. (2021). Introduction to Plastics Engineering. Journal of Engineering Materials and Technology, 143(3), 036501. doi:10.1115/1.4051082.
D’hooge, D. R., Trigilio, A. D., Marien, Y. W., & van Steenberge, P. H. M. (2020). Gillespie-driven kinetic Monte Carlo algorithms to model events for bulk or solution (bio)chemical systems containing elemental and distributed species. Industrial and Engineering Chemistry Research, 59(41), 18357–18386. doi:10.1021/acs.iecr.0c03888.
dos Santos Silva, J., Albuquerque Melo, P., Marinho, R., Castro de Jesus, N. J., Márcio, M. H., & Pinto, J. C. (2024). Modeling of suspension polymerizations in continuous oscillatory baffled reactors (COBR) - Part I: Vinyl acetate polymerization. Chemical Engineering Science, 288. doi:10.1016/j.ces.2024.119845.
Rapp, J. L., Borden, M. A., Bhat, V., Sarabia, A., & Leibfarth, F. A. (2024). Continuous Polymer Synthesis and Manufacturing of Polyurethane Elastomers Enabled by Automation. ACS Polymers Au, 4(2), 120–127. doi:10.1021/acspolymersau.3c00033.
Trigilio, A. D., Marien, Y. W., De Smit, K., Van Steenberge, P. H., & D'hooge, D. R. (2024). A Signal‐To‐Noise‐Ratio‐Based Automated Algorithm to accelerate Kinetic Monte Carlo Convergence in Basic Polymerizations. Advanced Theory and Simulations, 7(2), 2300637. doi:10.1002/adts.202300637.
Miftakhov, E. N., Kashnikova, A. P., & Ivanov, D. V. (2024). Using genetic algorithms to solve the problem of finding the optimal composition of the reaction mixture. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 24(4), 637–644. doi:10.17586/2226-1494-2024-24-4-637-644.
Monakov, Y. B., Sigaeva, N. N., Urazbaev, N., & Zaikov, G. E. (2005). Active sites of polymerization: Multiplicity: Stereospecific and kinetic heterogeneity. Active Sites of Polymerization: Multiplicity: Stereospecific and Kinetic Heterogeneity. Brill Academic Publishing, Leiden, Netherlands.
Zakharov, V. P., Mingaleev, V. Z., Berlin, A. A., Nasyrov, I. S., Zhavoronkov, D. A., & Zakharova, E. M. (2015). Kinetic inhomogeneity of titanium- and neodymium-based catalysts for the production of cis-1,4-polyisoprene. Russian Journal of Physical Chemistry B, 9(2), 300–305. doi:10.1134/S199079311502013X.
Miftakhov, E. N., Mustafina, S. A., Nasyrov, I. S., & Daminov, A. K. (2021). Kinetic Heterogeneity of Polymer Products Obtained in the Presence of Microheterogenic Catalytic Systems Based on Gel Chromatograms. Periódico Tchê Química, 18(38), 27–37. doi:10.52571/ptq.v18.n38.2021.03_miftakhov_pgs_27_37.pdf.
Teraoka, I. (2020). Polymer solution: An Introduction to Physical Properties. Physics of Polymer Gels. John Wiley & Sons, New York, United States.
Miftakhov, E. N., Mustafina, S. A., Nasyrov, I. S., & Faizova, V. Y. (2022). Kinetic Heterogeneity of the Catalytic System Based on Gadolinium Chloride Solvate in 1,4-cis-Polyisoprene Production. Russian Journal of Applied Chemistry, 95(3), 423–429. doi:10.1134/S1070427222030120.
Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., & Yagola, A. G. (1995). Numerical Methods for the Solution of Ill-Posed Problems. Numerical Methods for the Solution of Ill-Posed Problems. Springer Science and Business Media, Dordrecht, the Netherlands. doi:10.1007/978-94-015-8480-7.
Usmanov, T. S., Usmanov, A. S., Yagola, A. G., & Usmanov, S. M. Inverse problems of formation for the molecular-weight distribution in polymerization processes. Numerical Methods and, Programming, 7(4), 294–299.
Miftakhov, E., Mustafina, S., Akimov, A., & Mustafina, S. (2024). Simulation approach to study kinetic heterogeneity of gadolinium catalytic system in the 1, 4-cis-polyisoprene production. E-Polymers, 24(1), 20230131. doi:10.1515/epoly-2023-0131.
Patent 2023669372 (2023). Simulation Approach to Solving the Inverse Problem of MMR Formation. Moscow, Russian Federation.
Gu, Z., Yang, R., Yang, J., Qiu, X., Liu, R., Liu, Y., Zhou, Z., & Nie, Y. (2018). Dynamic Monte Carlo simulations of effects of nanoparticle on polymer crystallization in polymer solutions. Computational Materials Science, 147, 217–226. doi:10.1016/j.commatsci.2018.02.009.
Patent 2020610226 (2020). Solution of the direct problem of the continuous process of isoprene polymerization in the presence of microheterogeneous catalytic systems in a cascade of reactors. Moscow, Russian Federation.
Patent 2021612334 (2021). "IsoprenePolyMCM" for Monte Carlo simulation of the batch process of isoprene polymerization in the presence of a polycenter catalytic system. Moscow, Russian Federation.
Braun, G., Carderera, A., Combettes, C. W., Hassani, H., Karbasi, A., Mokhtari, A., & Pokutta, S. (2022). Conditional gradient methods. arXiv preprint arXiv:2211.14103. doi:10.48550/arXiv.2211.14103.
Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons, New York, United States.
Panteleev, A. V., Skavinskaya, D. V., & Aleshina, E. A. (2017). Metaheuristic Algorithms of Search of Optimum Program Control. Infra-M, Moscow, Russia.
Miftakhov, E., Mikhailova, T., & Mustafina, S. (2024). Methods and Algorithms for Implementation of Imitation Approach to Modeling of Physicochemical Processes. Proceedings - 2024 International Russian Smart Industry Conference, SmartIndustryCon 2024, 829–833. doi:10.1109/SmartIndustryCon61328.2024.10515621.
Miftakhov, E. N., Mustafina, S. A., Nasyrov, I. S., & Morozkin, N. D. (2023). Algorithm for Evaluation of the Molecular Characteristics of a Polymer Product under Conditions of Multipoint Control. Engineering Technologies and Systems, 33(2), 270–287. doi:10.15507/2658-4123.033.202302.270-287.
Xu, D., & Xu, H. (2024). Application of genetic algorithm in model music composition innovation. Applied Mathematics and Nonlinear Sciences, 9(1), 1-15. doi:10.2478/amns.2023.2.00070.
Osaba, E., Del Ser, J., Martinez, A. D., & Lobo, J. L. (2022). A Multifactorial Cellular Genetic Algorithm for Multimodal Multitask Optimization. 2022 IEEE Congress on Evolutionary Computation, CEC 2022 - Conference Proceedings, 1–8. doi:10.1109/CEC55065.2022.9870324.
Kii, T., Yaji, K., Fujita, K., Sha, Z., & Seepersad, C. C. (2024). Latent Crossover for Data-Driven Multifidelity Topology Design. Journal of Mechanical Design, 146(5), 051713-1-15. doi:10.1115/1.4064979.
Kim, C., Batra, R., Chen, L., Tran, H., & Ramprasad, R. (2021). Polymer design using genetic algorithm and machine learning. Computational Materials Science, 186. doi:10.1016/j.commatsci.2020.110067.
van Wyk, M., & Bekker, J. (2023). Application of metaheuristics in multi-product polymer production scheduling: A case study. Systems and Soft Computing, 5, 200063. doi:10.1016/j.sasc.2023.200063.
Roth, D., Fritz, J., Southwick, T., Addie, S., & Smith S. (2021). Blazor for ASP.NET web forms developers (Microsoft Corporation), Redmond, Washington, United States.
Daly, D. (2021). Performance Engineering and Database Development at MongoDB. Companion of the ACM/SPEC International Conference on Performance Engineering, 129–129. doi:10.1145/3447545.3451199.
Ljungdahl, V. (2022). Performance comparison of distributed MySQL and MongoDB in a cloud environment. Faculty of Computing, Blekinge Institute of Technology, Karlskrona, Sweden.
Erl, T., & Monroy, E. (2023). Cloud Computing: Concepts, Technology, Security, and Architecture (2nd Edition). Pearson, London, United Kingdom.
Mouat, A. (2015). Using Docker: Developing and Deploying Software with Containers. O'Reilly Media, Inc. California, United States.
Kane, S.P., & Matthias K. (2023). Docker: Up & Running (3rd Edition). O'Reilly Media, Inc. California, United States.
Öggl, B., & Kofler, M. (2023). Docker: Practical Guide for Developers and DevOps Teams. Rheinwerk Publishing, Massachusetts, United States.
Nasyrov, I.S., Zhavoronkov, D.A., Faizova, V.Y., Zakharov, V.P., & Zakharova E.M. (2016). Evaluation of the efficiency of using a tubular turbulent apparatus in the step of titanium catalyst preparation in isoprene rubber production. Russian Journal of Applied Chemistry, 89(6), 960-964. doi:10.1134/S1070427216060197.
Zakharov, V.P., Mingaleev, V.Z., Berlin, A.A., Nasyrov, I.Sh., Zhavoronkov, D.A., & Zakharova, E.M. (2015). Kinetic heterogeneity of titanium and neodymium catalysts for the production of 1,4-cis-polyisoprene. Chemical Physics. 34(3), 69–75. doi:10.7868/S0207401X15030139.
DOI: 10.28991/ESJ-2024-08-06-023
Refbacks
- There are currently no refbacks.