Development of a Cloud Service for Comprehensive Research of Polymer Synthesis Processes

Eldar Miftakhov, Sofya Mustafina, Anastasiya Kashnikova, Andrey Akimov

Abstract


The issue of digitalization in chemical technology production is currently quite pressing, and the available computational infrastructure is insufficient for assessing the technological properties of the products obtained through mathematical modeling tools. This problem is particularly relevant for polymer synthesis processes, where standard empirical evaluations require enormous computational resources, and existing methods and algorithms prove ineffective when organizing multiple computational trials to select optimal production scenarios. The aim of this study is to develop a cloud-based digital service that enables comprehensive research into complex physicochemical processes occurring via polymerization mechanisms. The implementation of all algorithms is based on the use of kinetic and statistical approaches to modeling, and the embedded calculation methods are adapted to the specifics of polymerization processes. The conceptual framework of the developed cloud service is represented by a three-tier network architecture, and the established mechanism of network interaction allows the service to operate in a 24-hour multi-user mode. Task execution in the remote environment and the distribution of computational resources are handled using Docker containerization technology, which provides software-level virtualization within the operating system. The storage subsystem is managed by the MongoDB database management system, which supports distributed information storage functions. The organization of test computational experiments in evaluating the detailed properties of polymer products allowed for the assessment of the system’s core logic in web interface mode and the adequacy of the obtained calculation results.

 

Doi: 10.28991/ESJ-2024-08-06-023

Full Text: PDF


Keywords


Cloud Computing; Polymer; Algorithm; Network; Modelling; Management Systems.

References


Podvalny, S. L., Belyanin, A. M., Tikhomirov, S. G., & Khvostov, A. A. (2016). Simulating dynamic modes of polymer synthesis, based on the method of moments for multimodal distributions. Bulletin of the Russian Academy of Sciences: Physics, 80(9), 1150–1151. doi:10.3103/S1062873816090379.

Ulitin, N. V., Nasyrov, I. I., Deberdeev, T. R., & Berlin, A. A. (2012). Kinetic approach to modeling the radical polymerization of butyl acrylate in the presence dibenzyl trithiocarbonate. Russian Journal of Physical Chemistry B, 6(6), 761–768. doi:10.1134/S1990793112060218.

Miftakhov, E. N., Nasyrov, I. S., Mustafina, S. A., & Zakharov, V. P. (2021). Study of Kinetics of Isoprene Polymerization in the Presence of Neodymium-Containing Catalytic Systems Modified in Turbulent Flows. Russian Journal of Applied Chemistry, 94(1), 77–83. doi:10.1134/S1070427221010110.

Mavrantzas, V. G. (2021). Using Monte Carlo to Simulate Complex Polymer Systems: Recent Progress and Outlook. Frontiers in Physics, 9. doi:10.3389/fphy.2021.661367.

Yang, B., Liu, S., Ma, J., Yang, Y., Li, J., Jiang, B. P., Ji, S., & Shen, X. C. (2022). Monte Carlo Simulation of Surface-Initiated Polymerization: Heterogeneous Reaction Environment. Macromolecules, 55(6), 1970–1980. doi:10.1021/acs.macromol.1c02575.

Huang, Z., Gu, C., Li, J., Xiang, P., Liao, Y., Jiang, B. P., Ji, S., & Shen, X. C. (2024). Surface-Initiated Polymerization with an Initiator Gradient: A Monte Carlo Simulation. Polymers, 16(9), 1203. doi:10.3390/polym16091203.

Tippur, H. (2021). Introduction to Plastics Engineering. Journal of Engineering Materials and Technology, 143(3), 036501. doi:10.1115/1.4051082.

D’hooge, D. R., Trigilio, A. D., Marien, Y. W., & van Steenberge, P. H. M. (2020). Gillespie-driven kinetic Monte Carlo algorithms to model events for bulk or solution (bio)chemical systems containing elemental and distributed species. Industrial and Engineering Chemistry Research, 59(41), 18357–18386. doi:10.1021/acs.iecr.0c03888.

dos Santos Silva, J., Albuquerque Melo, P., Marinho, R., Castro de Jesus, N. J., Márcio, M. H., & Pinto, J. C. (2024). Modeling of suspension polymerizations in continuous oscillatory baffled reactors (COBR) - Part I: Vinyl acetate polymerization. Chemical Engineering Science, 288. doi:10.1016/j.ces.2024.119845.

Rapp, J. L., Borden, M. A., Bhat, V., Sarabia, A., & Leibfarth, F. A. (2024). Continuous Polymer Synthesis and Manufacturing of Polyurethane Elastomers Enabled by Automation. ACS Polymers Au, 4(2), 120–127. doi:10.1021/acspolymersau.3c00033.

Trigilio, A. D., Marien, Y. W., De Smit, K., Van Steenberge, P. H., & D'hooge, D. R. (2024). A Signal‐To‐Noise‐Ratio‐Based Automated Algorithm to accelerate Kinetic Monte Carlo Convergence in Basic Polymerizations. Advanced Theory and Simulations, 7(2), 2300637. doi:10.1002/adts.202300637.

Miftakhov, E. N., Kashnikova, A. P., & Ivanov, D. V. (2024). Using genetic algorithms to solve the problem of finding the optimal composition of the reaction mixture. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 24(4), 637–644. doi:10.17586/2226-1494-2024-24-4-637-644.

Monakov, Y. B., Sigaeva, N. N., Urazbaev, N., & Zaikov, G. E. (2005). Active sites of polymerization: Multiplicity: Stereospecific and kinetic heterogeneity. Active Sites of Polymerization: Multiplicity: Stereospecific and Kinetic Heterogeneity. Brill Academic Publishing, Leiden, Netherlands.

Zakharov, V. P., Mingaleev, V. Z., Berlin, A. A., Nasyrov, I. S., Zhavoronkov, D. A., & Zakharova, E. M. (2015). Kinetic inhomogeneity of titanium- and neodymium-based catalysts for the production of cis-1,4-polyisoprene. Russian Journal of Physical Chemistry B, 9(2), 300–305. doi:10.1134/S199079311502013X.

Miftakhov, E. N., Mustafina, S. A., Nasyrov, I. S., & Daminov, A. K. (2021). Kinetic Heterogeneity of Polymer Products Obtained in the Presence of Microheterogenic Catalytic Systems Based on Gel Chromatograms. Periódico Tchê Química, 18(38), 27–37. doi:10.52571/ptq.v18.n38.2021.03_miftakhov_pgs_27_37.pdf.

Teraoka, I. (2020). Polymer solution: An Introduction to Physical Properties. Physics of Polymer Gels. John Wiley & Sons, New York, United States.

Miftakhov, E. N., Mustafina, S. A., Nasyrov, I. S., & Faizova, V. Y. (2022). Kinetic Heterogeneity of the Catalytic System Based on Gadolinium Chloride Solvate in 1,4-cis-Polyisoprene Production. Russian Journal of Applied Chemistry, 95(3), 423–429. doi:10.1134/S1070427222030120.

Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., & Yagola, A. G. (1995). Numerical Methods for the Solution of Ill-Posed Problems. Numerical Methods for the Solution of Ill-Posed Problems. Springer Science and Business Media, Dordrecht, the Netherlands. doi:10.1007/978-94-015-8480-7.

Usmanov, T. S., Usmanov, A. S., Yagola, A. G., & Usmanov, S. M. Inverse problems of formation for the molecular-weight distribution in polymerization processes. Numerical Methods and, Programming, 7(4), 294–299.

Miftakhov, E., Mustafina, S., Akimov, A., & Mustafina, S. (2024). Simulation approach to study kinetic heterogeneity of gadolinium catalytic system in the 1, 4-cis-polyisoprene production. E-Polymers, 24(1), 20230131. doi:10.1515/epoly-2023-0131.

Patent 2023669372 (2023). Simulation Approach to Solving the Inverse Problem of MMR Formation. Moscow, Russian Federation.

Gu, Z., Yang, R., Yang, J., Qiu, X., Liu, R., Liu, Y., Zhou, Z., & Nie, Y. (2018). Dynamic Monte Carlo simulations of effects of nanoparticle on polymer crystallization in polymer solutions. Computational Materials Science, 147, 217–226. doi:10.1016/j.commatsci.2018.02.009.

Patent 2020610226 (2020). Solution of the direct problem of the continuous process of isoprene polymerization in the presence of microheterogeneous catalytic systems in a cascade of reactors. Moscow, Russian Federation.

Patent 2021612334 (2021). "IsoprenePolyMCM" for Monte Carlo simulation of the batch process of isoprene polymerization in the presence of a polycenter catalytic system. Moscow, Russian Federation.

Braun, G., Carderera, A., Combettes, C. W., Hassani, H., Karbasi, A., Mokhtari, A., & Pokutta, S. (2022). Conditional gradient methods. arXiv preprint arXiv:2211.14103. doi:10.48550/arXiv.2211.14103.

Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons, New York, United States.

Panteleev, A. V., Skavinskaya, D. V., & Aleshina, E. A. (2017). Metaheuristic Algorithms of Search of Optimum Program Control. Infra-M, Moscow, Russia.

Miftakhov, E., Mikhailova, T., & Mustafina, S. (2024). Methods and Algorithms for Implementation of Imitation Approach to Modeling of Physicochemical Processes. Proceedings - 2024 International Russian Smart Industry Conference, SmartIndustryCon 2024, 829–833. doi:10.1109/SmartIndustryCon61328.2024.10515621.

Miftakhov, E. N., Mustafina, S. A., Nasyrov, I. S., & Morozkin, N. D. (2023). Algorithm for Evaluation of the Molecular Characteristics of a Polymer Product under Conditions of Multipoint Control. Engineering Technologies and Systems, 33(2), 270–287. doi:10.15507/2658-4123.033.202302.270-287.

Xu, D., & Xu, H. (2024). Application of genetic algorithm in model music composition innovation. Applied Mathematics and Nonlinear Sciences, 9(1), 1-15. doi:10.2478/amns.2023.2.00070.

Osaba, E., Del Ser, J., Martinez, A. D., & Lobo, J. L. (2022). A Multifactorial Cellular Genetic Algorithm for Multimodal Multitask Optimization. 2022 IEEE Congress on Evolutionary Computation, CEC 2022 - Conference Proceedings, 1–8. doi:10.1109/CEC55065.2022.9870324.

Kii, T., Yaji, K., Fujita, K., Sha, Z., & Seepersad, C. C. (2024). Latent Crossover for Data-Driven Multifidelity Topology Design. Journal of Mechanical Design, 146(5), 051713-1-15. doi:10.1115/1.4064979.

Kim, C., Batra, R., Chen, L., Tran, H., & Ramprasad, R. (2021). Polymer design using genetic algorithm and machine learning. Computational Materials Science, 186. doi:10.1016/j.commatsci.2020.110067.

van Wyk, M., & Bekker, J. (2023). Application of metaheuristics in multi-product polymer production scheduling: A case study. Systems and Soft Computing, 5, 200063. doi:10.1016/j.sasc.2023.200063.

Roth, D., Fritz, J., Southwick, T., Addie, S., & Smith S. (2021). Blazor for ASP.NET web forms developers (Microsoft Corporation), Redmond, Washington, United States.

Daly, D. (2021). Performance Engineering and Database Development at MongoDB. Companion of the ACM/SPEC International Conference on Performance Engineering, 129–129. doi:10.1145/3447545.3451199.

Ljungdahl, V. (2022). Performance comparison of distributed MySQL and MongoDB in a cloud environment. Faculty of Computing, Blekinge Institute of Technology, Karlskrona, Sweden.

Erl, T., & Monroy, E. (2023). Cloud Computing: Concepts, Technology, Security, and Architecture (2nd Edition). Pearson, London, United Kingdom.

Mouat, A. (2015). Using Docker: Developing and Deploying Software with Containers. O'Reilly Media, Inc. California, United States.

Kane, S.P., & Matthias K. (2023). Docker: Up & Running (3rd Edition). O'Reilly Media, Inc. California, United States.

Öggl, B., & Kofler, M. (2023). Docker: Practical Guide for Developers and DevOps Teams. Rheinwerk Publishing, Massachusetts, United States.

Nasyrov, I.S., Zhavoronkov, D.A., Faizova, V.Y., Zakharov, V.P., & Zakharova E.M. (2016). Evaluation of the efficiency of using a tubular turbulent apparatus in the step of titanium catalyst preparation in isoprene rubber production. Russian Journal of Applied Chemistry, 89(6), 960-964. doi:10.1134/S1070427216060197.

Zakharov, V.P., Mingaleev, V.Z., Berlin, A.A., Nasyrov, I.Sh., Zhavoronkov, D.A., & Zakharova, E.M. (2015). Kinetic heterogeneity of titanium and neodymium catalysts for the production of 1,4-cis-polyisoprene. Chemical Physics. 34(3), 69–75. doi:10.7868/S0207401X15030139.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-023

Refbacks

  • There are currently no refbacks.