Clustering and Network Analysis of Mobility Patterns as an Analysis Tool for Lean Project

András Rácz-Szabó, Tamás Ruppert, János Abonyi

Abstract


The study aims to optimize internal logistics processes by applying Lean philosophy and data science tools, with a primary focus on qualifying processes to determine their value-added contribution within the logistics context. Utilizing a novel two-step methodology, the research first employs a modified DBSCAN algorithm to analyze indoor positioning data and categorize activities. This is followed by multi-layer network modeling to understand processes and create a framework that enables the reduction of idle activities through optimization algorithms. A real warehouse case study, using a UWB-based Indoor Positioning System (IPS) to track forklifts, demonstrates the method's effectiveness in identifying non-value-added activities. The results reveal specific opportunities for reducing idle, enhancing resource utilization, and improving operational efficiency. This innovative combination of advanced data analysis techniques and Lean principles provides a comprehensive framework for logistics optimization, significantly enhancing process efficiency through optimized task scheduling and resource allocation.

 

Doi: 10.28991/ESJ-2025-09-01-013

Full Text: PDF


Keywords


Indoor Positioning System; Position Data; Warehouse; Clustering; Multi-Layer Network.

References


Sopadang, A., Wichaisri, S., & Sekhari, A. (2014, August). The conceptual framework of lean sustainable logistics. Materiały z konferencji, International Conference on Transportation and Logistics. 27-29 August, 2017, Kuala Lumpur - Malaysia.

Campos, V. M. K., Cotrim, S. L., Galdamez, E. V. C., & Leal, G. C. L. (2016). Introduction of Lean Manufacturing Philosophy by Kaizen Event: Case Study on a Metalmechanical Industry. Independent Journal of Management & Production, 7(1), 151–167. doi:10.14807/ijmp.v7i1.388.

Cifone, F. D., Hoberg, K., Holweg, M., & Staudacher, A. P. (2021). ‘Lean 4.0’: How can digital technologies support lean practices? International Journal of Production Economics, 241, 108258. doi:10.1016/j.ijpe.2021.108258.

Romero, D., Gaiardelli, P., Powell, D., Wuest, T., Thürer, M. (2018). Digital Lean Cyber-Physical Production Systems: The Emergence of Digital Lean Manufacturing and the Significance of Digital Waste. Advances in Production Management Systems. Production Management for Data-Driven, Intelligent, Collaborative, and Sustainable Manufacturing. APMS 2018. IFIP Advances in Information and Communication Technology, Springer, Cham, Switzerland. doi:10.1007/978-3-319-99704-9_2.

Javaid, M., Haleem, A., Singh, R. P., Rab, S., Suman, R., & Khan, S. (2021). Exploring relationships between Lean 4.0 and manufacturing industry. Industrial Robot: The International Journal of Robotics Research and Application, 49(3), 402–414. doi:10.1108/ir-08-2021-0184.

Arunagiri, P., & Gnanavelbabu, A. (2014). Identification of major lean production waste in automobile industries using weighted average method. Procedia Engineering, 97, 2167–2175. doi:10.1016/j.proeng.2014.12.460.

Aminzadegan, S., Tamannaei, M., & Rasti-Barzoki, M. (2019). Multi-agent supply chain scheduling problem by considering resource allocation and transportation. Computers & Industrial Engineering, 137, 106003. doi:10.1016/j.cie.2019.106003.

Szabó, P., Janík, S., Mĺkva, M., & Czifra, G. (2024). Waste Elimination in the Assembly Process using Lean Tools. Acta Polytechnica Hungarica, 21(4), 165–184. doi:10.12700/APH.21.4.2024.4.9.

Gebeyehu, S. G., Abebe, M., & Gochel, A. (2022). Production lead time improvement through lean manufacturing. Cogent Engineering, 9(1), 2034255. doi:10.1080/23311916.2022.2034255.

Correia, N., Teixeira, L., & Ramos, A. L. (2020). Implementing an AGV system to transport finished goods to the warehouse. Advances in Science, Technology and Engineering Systems, 5(2), 241–247. doi:10.25046/aj050231.

Lian, Y.-H., & Landeghem, H. Van. (2002). An Application of Simulation and Value Stream Mapping in Lean Manufacturing. Proceedings 14th European Simulation Symposium, 23-26 October, 2002, Dresden, Germany.

Schoeman, Y., Oberholster, P., & Somerset, V. (2020). Value Stream Mapping as a Supporting Management Tool to Identify the Flow of Industrial Waste: A Case Study. Sustainability, 13(1), 91. doi:10.3390/su13010091.

Venkataraman, K., Ramnath, B. V., Kumar, V. M., & Elanchezhian, C. (2014). Application of Value Stream Mapping for Reduction of Cycle Time in a Machining Process. Procedia Materials Science, 6, 1187–1196. doi:10.1016/j.mspro.2014.07.192.

Romero, D., Gaiardelli, P., Wuest, T., Powell, D., Thürer, M. (2020). New Forms of Gemba Walks and Their Digital Tools in the Digital Lean Manufacturing World. Advances in Production Management Systems. Towards Smart and Digital Manufacturing. APMS 2020. IFIP Advances in Information and Communication Technology, Springer, Cham, Switzerland. doi:10.1007/978-3-030-57997-5_50.

Rácz-Szabó, A., Ruppert, T., Bántay, L., Löcklin, A., Jakab, L., & Abonyi, J. (2020). Real-Time Locating System in Production Management. Sensors, 20(23), 6766. doi:10.3390/s20236766.

Elsanhoury, M., Makela, P., Koljonen, J., Valisuo, P., Shamsuzzoha, A., Mantere, T., Elmusrati, M., & Kuusniemi, H. (2022). Precision Positioning for Smart Logistics Using Ultra-Wideband Technology-Based Indoor Navigation: A Review. IEEE Access, 10, 44413–44445. doi:10.1109/ACCESS.2022.3169267.

Pan, C., & Liu, M. (2021). Optimization of intelligent logistics supply chain management system based on wireless sensor network and RFID technology. Journal of Sensors, 2021(1), 8111909. doi:10.1155/2021/8111909.

Rácz-Szabó, A, Ruppert, T, & Abonyi, J. (2023). Improving micro-logistics processes by indoor positioning system and the tools of data science PCS Science: Eclipse Solutions Ltd, 10-16.

Darányi, A., Dörgő, G., Ruppert, T., & Abonyi, J. (2022). Processing indoor positioning data by goal-oriented supervised fuzzy clustering for tool management. Journal of Manufacturing Systems, 63, 15–22. doi:10.1016/j.jmsy.2022.02.010.

Locklin, A., Ruppert, T., Jakab, L., Libert, R., Jazdi, N., & Weyrich, M. (2020). Trajectory Prediction of Humans in Factories and Warehouses with Real-Time Locating Systems. 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1317–1320. doi:10.1109/etfa46521.2020.9211913.

Khaswala, Z. N., & Irani, S. A. (2001). Value network mapping (VNM): visualization and analysis of multiple flows in value stream maps. Proceedings of the Lean Management Solutions Conference, 10-11 September, 2001, St Louis, United States.

Kolich, D., Yao, Y. L., Fafandjel, N., & Hadjina, M. (2014). Value Stream Mapping Micropanel Assembly with Clustering to improve Flow in a Shipyard. International Conference on Innovative Technologies, 28-29 December, 2014, Bangkok, Thailand.

Farahani, M. A., McCormick, M. R., Harik, R., & Wuest, T. (2025). Time-series classification in smart manufacturing systems: An experimental evaluation of state-of-the-art machine learning algorithms. Robotics and Computer-Integrated Manufacturing, 91, 102839. doi:10.1016/j.rcim.2024.102839.

Muehlbauer, K., Wuennenberg, M., Meissner, S., & Fottner, J. (2022). Data driven logistics-oriented value stream mapping 4.0: A guideline for practitioners. IFAC-PapersOnLine, 55(16), 364–369. doi:10.1016/j.ifacol.2022.09.051.

Löcklin, A., Dettinger, F., Artelt, M., Jazdi, N., & Weyrich, M. (2022). Trajectory Prediction of Workers to Improve AGV and AMR Operation based on the Manufacturing Schedule. Procedia CIRP, 107, 283–288. doi:10.1016/j.procir.2022.04.046.

Steclik, T., Cupek, R., & Drewniak, M. (2022). Automatic grouping of production data in Industry 4.0: The use case of internal logistics systems based on Automated Guided Vehicles. Journal of Computational Science, 62, 101693. doi:10.1016/j.jocs.2022.101693.

Lyu, Z., Pons, D., Palliparampil, G., & Zhang, Y. (2023). Optimising Urban Freight Logistics Using Discrete-Event Simulation and Cluster Analysis: A Stochastic Two-Tier Hub-and-Spoke Architecture Approach. Smart Cities, 6(5), 2347–2366. doi:10.3390/smartcities6050107.

Subramaniyan, M., Skoogh, A., Muhammad, A. S., Bokrantz, J., Johansson, B., & Roser, C. (2020). A generic hierarchical clustering approach for detecting bottlenecks in manufacturing. Journal of Manufacturing Systems, 55, 143–158. doi:10.1016/j.jmsy.2020.02.011.

Pilati, F., Sbaragli, A., Ruppert, T., & Abonyi, J. (2024). Goal-oriented clustering algorithm to monitor the efficiency of logistic processes through real-time locating systems. International Journal of Computer Integrated Manufacturing, 1–17. doi:10.1080/0951192X.2024.2372272.

Racz-Szabo, A., Ruppert, T., & Abonyi, J. (2024). Multilayer Network-Based Evaluation of the Efficiency and Resilience of Network Flows. Complexity, 2024(1), 6940097. doi:10.1155/2024/6940097.

Lepuschitz, W., Jirkovsky, V., Kadera, P., & Vrba, P. (2012). A Multi-Layer Approach for Failure Detection in a Manufacturing System Based on Automation Agents. 2012 Ninth International Conference on Information Technology - New Generations, 1–6. doi:10.1109/itng.2012.8.

Zhou, J. (2023). Logistics inventory optimization method for agricultural e-commerce platforms based on a multilayer feedforward neural network. Pakistan Journal of Agricultural Sciences, 60, 487-496. doi:10.21162/PAKJAS/23.131.

Rácz-Szabó, A., Ruppert, T., & Abonyi, J. (2024). Data reconciliation of indoor positioning data: Improve position data accuracy in warehouse environment. MethodsX, 13, 102838. doi:10.1016/j.mex.2024.102838.

Cheng, D., Yue, G., Pei, T., & Wu, M. (2021). Clustering indoor positioning data using E-DBSCAN. ISPRS International Journal of Geo-Information, 10(10), 669. doi:10.3390/ijgi10100669.


Full Text: PDF

DOI: 10.28991/ESJ-2025-09-01-013

Refbacks

  • There are currently no refbacks.