Enhancing Supply Chain Resilience through Artificial Intelligence: A Strategic Framework for Executives

Sruthy Suresh K.

Abstract


In today's contemporary turbulent business environment, marked by disruptions ranging from natural disasters to global pandemic, supply chain resilience is crucial. This research addresses the pressing need to understand challenges faced by Indian supply chain executives by adopting AI-driven solutions for enhancing resilience. Analyzing data from 300 executives using ANOVA and t-tests reveals critical patterns in encountered barriers. Simultaneously, the study aims to fill gaps in existing literature by developing a strategic framework for executives. Using Structured Equation Modeling (SEM), it outlines best practices for integrating AI into supply chain operations, offering nuanced insights into strategic considerations and organizational barriers influencing AI adoption decisions. The research identifies a gap in comprehensive studies on challenges and decision-making factors specific to Indian executives adopting AI for supply chain resilience. By addressing this gap, the study enriches global discourse on AI in supply chain management and provides targeted guidance to Indian executives navigating AI-enabled operations. Ultimately, the research aims to empower executives with actionable insights to effectively leverage AI, enabling them to fortify supply chain resilience amidst India's evolving business dynamics.

JEL Code: O32, M15, L23, L25, Q55.

 

Doi: 10.28991/ESJ-2024-08-04-013

Full Text: PDF


Keywords


Supply Chain Resilience; Artificial Intelligence (AI) Integration; Executive Decision-making; Challenges in AI Adoption; Strategic Framework; Organizational Barriers.

References


McKinsey Insights. (2023). Succeeding in the AI supply-chain revolution. McKinsey & Company, New York, United States. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/succeeding-in-the-ai-supply-chain-revolution (accessed on July 2024).

Deloitte. (2024). Generative AI-powered supply chain resilience. Deloitte, London, United Kingdom. Available online: https://www2.deloitte.com/us/en/blog/business-operations-room-blog/2023/generative-ai-in-supply-chain-resilience.html (accessed on July 2024).

Hangl, J., Behrens, V. J., & Krause, S. (2022). Barriers, Drivers, and Social Considerations for AI Adoption in Supply Chain Management: A Tertiary Study. Logistics, 6(3), 63. doi:10.3390/logistics6030063.

KPMG. (2023). GenAI in Supply Chain. KMPG, Amstelveen, Netherlands. Available online: https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/genai-supply-chain-final-secured.pdf (accessed on July 2024).

Zhang, J., & Tao, D. (2020). Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet of Things Journal, 8(10), 7789-7817. doi:10.1109/JIOT.2020.3039359.

Matheny, M. E., Whicher, D., & Israni, S. T. (2020). Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA, 323(6), 509-510. doi:10.1001/jama.2019.21579.

Hofmann, E., Sternberg, H., Chen, H., Pflaum, A., & Prockl, G. (2019). Supply chain management and Industry 4.0: conducting research in the digital age. International Journal of Physical Distribution & Logistics Management, 49(10), 945-955. doi:10.1108/IJPDLM-11-2019-399.

Bansal, C., Pandey, K. K., Goel, R., Sharma, A., & Jangirala, S. (2023). Artificial intelligence (AI) bias impacts: classification framework for effective mitigation. Issues in Information Systems, 24(4), 367-389. doi:10.48009/4_iis_2023_127.

Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological forecasting and social change, 165, 120557. doi:10.1016/j.techfore.2020.120557.

Rjab, A. B., Mellouli, S., & Corbett, J. (2023). Barriers to artificial intelligence adoption in smart cities: A systematic literature review and research agenda. Government Information Quarterly, 40(3), 101814. doi:10.1016/j.giq.2023.101814.

Dora, M., Kumar, A., Mangla, S. K., Pant, A., & Kamal, M. M. (2022). Critical success factors influencing artificial intelligence adoption in food supply chains. International Journal of Production Research, 60(14), 4621-4640. doi:10.1080/00207543.2021.1959665.

Corbett, C. J., & Klassen, R. D. (2006). Extending the horizons: Environmental excellence as key to improving operations. Manufacturing and Service Operations Management, 8(1), 5–22. doi:10.1287/msom.1060.0095.

Gupta, S., Ghardallou, W., Pandey, D. K., & Sahu, G. P. (2022). Artificial intelligence adoption in the insurance industry: Evidence using the technology–organization–environment framework. Research in International Business and Finance, 63, 101757. doi:10.1016/j.ribaf.2022.101757.

Chen, L., Jia, F., Steward, M. D., & Schoenherr, T. (2022). The role of technology in enabling circular supply chain management. Industrial Marketing Management, 106, A1-A6. doi:10.1016/j.indmarman.2022.05.013.

Teece, D. J. (2018). Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Research Policy, 47(8), 1367–1387. doi:10.1016/j.respol.2017.01.015.

Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., ... & Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International journal of production economics, 226, 107599. doi:10.1016/j.ijpe.2019.107599.

Zhao, J., Lee, J. Y., Camenzind, D., Wolcott, M., Lewis, K., & Gillham, O. (2023). Multi-component resilience assessment framework for a supply chain system. Sustainability, 15(7), 6197. doi:10.3390/su15076197.

Mentzer, J. T., Stank, T. P., & Esper, T. L. (2008). Supply Chain Management and Its Relationship to Logistics, Marketing, Production, and Operations Management. Journal of Business Logistics, 29(1), 31–46. doi:10.1002/j.2158-1592.2008.tb00067.x.

NITI Aayog. (2023). National Strategy for Artificial Intelligence. NITI Aayog, New Delhi, India. Available online: https://www.niti.gov.in/sites/default/files/2023-03/National-Strategy-for-Artificial-Intelligence.pdf (accessed on July 2024).

Ahlawat Associates. (2023). Impact of Artificial Intelligence in India: Opportunities and Challenges. Ahlawat Associates, New Delhi, India. Available online: https://www.ahlawatassociates.com/blog/the-growing-impact-of-artificial-intelligence-in-india-opportunities-and-challenges (accessed on July 2024).

Analytics Vidhya. (2023). The Era of Gen AI: A New Beginning. Analytics Vidhya, Gurgaon, India Available online: https://www.analyticsvidhya.com (accessed on July 2024).

EY Saudi Arabia. (2023). Generative AI’s potential to accelerate India’s digital transformation. EY, Riyadh, Saudi Arabia. Available online: https://assets.ey.com/content/dam/ey-sites/ey-com/en_in/topics/gen-ai/2023/12/ey-gen-ai-report.pdf (accessed on June 2024).

Marda, V. (2018). Artificial intelligence policy in India: a framework for engaging the limits of data-driven decision-making. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180087. doi:10.1098/rsta.2018.0087.

Misra, S. K., Sharma, S. K., Gupta, S., & Das, S. (2023). A framework to overcome challenges to the adoption of artificial intelligence in Indian Government Organizations. Technological Forecasting and Social Change, 194, 122721. doi:10.1016/j.techfore.2023.122721.

Mukherjee, S., Chittipaka, V., Baral, M. M., Pal, S. K., & Rana, S. (2022). Impact of artificial intelligence in the healthcare sector. Artificial Intelligence and Industry 4.0, 23-54. doi:10.1016/B978-0-323-88468-6.00001-2.

Kshetri, N. (2017). The economics of the Internet of Things in the Global South. Third World Quarterly, 38(2), 311-339. doi:10.1080/01436597.2021.2013116.

Joshi, P., Tewari, V., Kumar, S., & Singh, A. (2023). Blockchain technology for sustainable development: a systematic literature review. Journal of Global Operations and Strategic Sourcing, 16(3), 683-717. doi:10.1108/TQM-07-2020-0160.

Joshi, S., & Sharma, M. (2022). Sustainable performance through digital supply chains in industry 4.0 era: amidst the pandemic experience. Sustainability, 14(24), 16726. doi:10.3390/su142416726.

Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N: q hypothesis. Structural equation modeling, 10(1), 128-141. doi:10.1207/S15328007SEM1001_6.

Shi, D., Lee, T., & Maydeu-Olivares, A. (2018). Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement, 79(2), 310–334. doi:10.1177/0013164418783530.

Pavlov, G., Maydeu-Olivares, A., & Shi, D. (2021). Using the Standardized Root Mean Squared Residual (SRMR) to Assess Exact Fit in Structural Equation Models. Educational and Psychological Measurement, 81(1), 110–130. doi:10.1177/0013164420926231.

Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. doi:10.3758/s13428-018-1055-2.

Hooper, D., Coughlan, J., & Mullen, M. R. (2013). The servicescape as an antecedent to service quality and behavioral intentions. Journal of Services Marketing, 27(4), 271–280. doi:10.1108/08876041311330753.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-04-013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sruthy Suresh K