Optimizing Injection Molding for Propellers with Soft Computing, Fuzzy Evaluation, and Taguchi Method

M. Hedayati-Dezfooli, Mehdi Moayyedian, Ali Dinc, Mostafa Abdrabboh, Ahmed Saber, A. M. Amer

Abstract


This research explores multi-objective optimization in injection molding with a focus on identifying the optimal configuration for the moldability index in aviation propeller manufacturing. The study employs the Taguchi method and fuzzy analytic hierarchy process (FAHP) combined with the Technique for the Order Performance by Similarity to the Ideal Solution (TOPSIS) to systematically evaluate diverse objectives. The investigation specifically addresses two prevalent defects—shrinkage rate and sink mark—that impact the final quality of injection-molded components. Polypropylene is chosen as the injection material, and critical process parameters encompass melt temperature, mold temperature, filling time, cooling time, and pressure holding time. The Taguchi L25 orthogonal array is selected, considering the number of levels and parameters, and Finite Element Analysis (FEA) is applied to enhance precision in results. To validate both simulation outcomes and the proposed optimization methodology, Artificial Neural Network (ANN) analysis is conducted for the chosen component. The Fuzzy-TOPSIS method, in conjunction with ANN, is employed to ascertain the optimal levels of the selected parameters. The margin of error between the chosen optimization methods is found to be less than one percent, underscoring their suitability for injection molding optimization. The efficacy of the selected optimization method has been corroborated in prior research. Ultimately, employing the fuzzy-TOPSIS optimization method yields a minimum shrinkage value of 16.34% and a sink mark value of 0.0516 mm. Similarly, utilizing the ANN optimization method results in minimum values of 16.42% for shrinkage and 0.0519 mm for the sink mark.

 

Doi: 10.28991/ESJ-2024-08-05-025

Full Text: PDF


Keywords


Injection Molding; Shrinkage; Sink Mark; Soft Computing; FAHP; TOPSIS; Taguchi.

References


Min, B. H. (2003). A study on quality monitoring of injection-molded parts. Journal of Materials Processing Technology, 136(1–3), 1–6. doi:10.1016/S0924-0136(02)00445-4.

Tang, S. H., Kong, Y. M., Sapuan, S. M., Samin, R., & Sulaiman, S. (2006). Design and thermal analysis of plastic injection mould. Journal of Materials Processing Technology, 171(2), 259-267. doi:10.1016/j.jmatprotec.2005.06.075.

Crawford, R. J. (1987). Rubber and plastic engineering design and application. ‎ Mechanical Engineering Pubns Ltd., London, United States.

Cutkosky, M. R., & Tenenbaum, J. M. (1987). CAD/CAM Integration through Concurrent Process and Product Design. American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, 25, 1–10.

Hassan, H., Regnier, N., Le Bot, C., & Defaye, G. (2010). 3D study of cooling system effect on the heat transfer during polymer injection molding. International Journal of Thermal Sciences, 49(1), 161–169. doi:10.1016/j.ijthermalsci.2009.07.006.

Gu, Y., Li, H., & Shen, C. (2001). Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics. Advances in Polymer Technology, 20(1), 14–21. doi:10.1002/1098-2329(200121)20:1<14::AID-ADV1001>3.0.CO;2-S.

Liu, S. J. (1996). Modeling and simulation of thermally induced stress and warpage in injection molded thermoplastics. Polymer Engineering & Science, 36(6), 807-818. doi:10.1002/pen.10468.

Amer, Y., Moayyedian, M., Hajiabolhasani, Z., & Moayyedian, L. (2012). Reducing warpage in injection moulding processes using taguchi method approach: ANOVA. Proceedings of the IASTED International Conference on Engineering and Applied Science, EAS 2012, 227–233. doi:10.2316/P.2012.785-089.

Jacques, M. S. (1982). An analysis of thermal warpage in injection molded flat parts due to unbalanced cooling. Polymer Engineering & Science, 22(4), 241–247. doi:10.1002/pen.760220405.

Leo, V., & Cuvelliez, C. (1996). The effect of the packing parameters, gate geometry, and mold elasticity on the final dimensions of a molded part. Polymer Engineering and Science, 36(15), 1961–1971. doi:10.1002/pen.10592.

Tarng, Y. S., & Yang, W. H. (1998). Application of the Taguchi method to the optimization of the submerged arc welding process. Materials and Manufacturing Processes, 13(3), 455–467. doi:10.1080/10426919808935262.

Connor, A. M. (1999). Parameter sizing for fluid power circuits using Taguchi methods. Journal of Engineering Design, 10(4), 377–390. doi:10.1080/095448299261263.

Liu, S. J., & Chang, C. Y. (2003). The influence of processing parameters on thin-wall gas assisted injection molding of thermoplastic materials. Journal of Reinforced Plastics and Composites, 22(8), 711–731. doi:10.1177/0731684403022008003.

Lin, C. L. (2004). Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics. Materials and Manufacturing Processes, 19(2), 209–220. doi:10.1081/AMP-120029852.

Moayyedian, M., Qazani, M. R. C., & Pourmostaghimi, V. (2023). Optimized injection-molding process for thin-walled polypropylene part using genetic programming and interior point solver. International Journal of Advanced Manufacturing Technology, 124(1–2), 297–313. doi:10.1007/s00170-022-10551-2.

He, W., Zhang, Y. F., Lee, K. S., Fuh, J. Y. H., & Nee, A. Y. C. (1998). Automated process parameter resetting for injection moulding: A fuzzy-neuro approach. Journal of Intelligent Manufacturing, 9(1), 17–27. doi:10.1023/A:1008843207417.

Chen, M. Y., Tzeng, H. W., Chen, Y. C., & Chen, S. C. (2008). The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 47(1), 119–126. doi:10.1016/j.isatra.2007.07.001.

Moayyedian, M., Derakhshandeh, J. F., & Lee, S. H. (2019). Optimization of strain measurement procedure based on fuzzy quality evaluation and Taguchi experimental design. SN Applied Sciences, 1(11), 150–160. doi:10.1007/s42452-019-1428-x.

Usman Jan, Q. M., Habib, T., Noor, S., Abas, M., Azim, S., & Yaseen, Q. M. (2020). Multi response optimization of injection moulding process parameters of polystyrene and polypropylene to minimize surface roughness and shrinkage’s using integrated approach of S/N ratio and composite desirability function. Cogent Engineering, 7(1), 1781424. doi:10.1080/23311916.2020.1781424.

Zhao, N. yang, Lian, J. yuan, Wang, P. fei, & Xu, Z. bin. (2022). Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: a review. International Journal of Advanced Manufacturing Technology, 120(1–2), 85–101. doi:10.1007/s00170-022-08859-0.

Guerra, N. B., Reis, T. M., Scopel, T., de Lima, M. S., Figueroa, C. A., & Michels, A. F. (2023). Influence of process parameters and post-molding condition on shrinkage and warpage of injection-molded plastic parts with complex geometry. International Journal of Advanced Manufacturing Technology, 128(1–2), 479–490. doi:10.1007/s00170-023-11782-7.

Fonseca, J. H., Jang, W., Han, D., Kim, N., & Lee, H. (2024). Strength and manufacturability enhancement of a composite automotive component via an integrated finite element/artificial neural network multi-objective optimization approach. Composite Structures, 327, 117694. doi:10.1016/j.compstruct.2023.117694.

Panchal, A., & Sheth, S. (2023). Optimization for Injection Molding Process Parameters Using Artificial Neural Network: A Critical Review. AIP Conference Proceedings, 2855(1), 090009. doi:10.1063/5.0168228.

Kengpol, A., & Tabkosai, P. (2024). Design of hybrid deep learning using TSA with ANN for cost evaluation in the plastic injection industry. Frontiers in Mechanical Engineering, 10, 1336828. doi:10.3389/fmech.2024.1336828.

EL Ghadoui, M., Mouchtachi, A., & Majdoul, R. (2023). A hybrid optimization approach for intelligent manufacturing in plastic injection molding by using artificial neural network and genetic algorithm. Scientific Reports, 13(1), 48679. doi:10.1038/s41598-023-48679-0.

Hermann, T., Niedziela, D., Salimova, D., & Schweiger, T. (2024). Predicting the fiber orientation of injection molded components and the geometry influence with neural networks. Journal of Composite Materials, 58(15), 1801–1811. doi:10.1177/00219983241248216.

Ez-Zahraouy, O., & Kamach, O. (2024). Quality Prediction in Injection Molding Using Machine Learning Methods. IEEE 15th International Colloquium of Logistics and Supply Chain Management, LOGISTIQUA 2024, 1–6. doi:10.1109/LOGISTIQUA61063.2024.10571516.

Seifert, L., Lockner, Y., & Hopmann, C. (2024). Investigations on the applicability of invertible neural networks (INN) in the injection moulding process. AIP Conference Proceedings, 3012(1), 020001. doi:10.1063/5.0193494.

Volke, J., & Heim, H. P. (2023). Evaluation of the injection molding process behavior during start-up and after parameter changes using dynamic time warping correspondences. Journal of Manufacturing Processes, 95, 183-203. doi:10.1016/j.jmapro.2023.03.076.

Cheng, J., Feng, Y., Tan, J., & Wei, W. (2008). Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 208(1–3), 222–228. doi:10.1016/j.jmatprotec.2007.12.114.

Goodship, V. (2004). Troubleshooting Injection Moulding. Smithers Rapra Technology, Shrewsbury, Shropshire, United Kingdom.

Chow, T. T., Zhang, G. Q., Lin, Z., & Song, C. L. (2002). Global optimization of absorption chiller system by genetic algorithm and neural network. Energy and Buildings, 34(1), 103–109. doi:10.1016/S0378-7788(01)00085-8.

Abidoye, L. K., & Das, D. B. (2015). Artificial neural network modeling of scale-dependent dynamic capillary pressure effects in two-phase flow in porous media. Journal of Hydroinformatics, 17(3), 446–461. doi:10.2166/hydro.2014.079.

Kalogirou, S. A. (1999). Applications of artificial neural networks in energy systems. A review. Energy Conversion and Management, 40(10), 1073–1087. doi:10.1016/S0196-8904(99)00012-6.

Holland, J. H. (1992). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. The University of Michigan Press, Michigan, United States.

Dinc, A., & Mamedov, A. (2022). Optimization of surface quality and machining time in micro-milling of glass. Aircraft Engineering and Aerospace Technology, 94(5), 676–686. doi:10.1108/AEAT-06-2021-0187.

Goldberg, D. E. (1989). Sizing Populations for Serial and Parallel Genetic Algorithms. In Proceedings of the Third International Conference on Genetic Algorithms. Proceedings of 3rd International Conference on Genetic Algorithms, 70-79. doi:10.5555/645512.657266.

Dinc, A., & Otkur, M. (2020). Emissions prediction of an aero-piston gasoline engine during surveillance flight of an unmanned aerial vehicle. Aircraft Engineering and Aerospace Technology, 93(3), 462–472. doi:10.1108/AEAT-09-2020-0196.

Moayyedian, M., Dinc, A., & Mamedov, A. (2021). Optimization of injection-molding process for thin-walled polypropylene part using artificial neural network and Taguchi techniques. Polymers, 13(23), 4158. doi:10.3390/polym13234158.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-05-025

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mehdi Moayyedian