Optimizing Injection Molding for Propellers with Soft Computing, Fuzzy Evaluation, and Taguchi Method
Abstract
Doi: 10.28991/ESJ-2024-08-05-025
Full Text: PDF
Keywords
References
Min, B. H. (2003). A study on quality monitoring of injection-molded parts. Journal of Materials Processing Technology, 136(1–3), 1–6. doi:10.1016/S0924-0136(02)00445-4.
Tang, S. H., Kong, Y. M., Sapuan, S. M., Samin, R., & Sulaiman, S. (2006). Design and thermal analysis of plastic injection mould. Journal of Materials Processing Technology, 171(2), 259-267. doi:10.1016/j.jmatprotec.2005.06.075.
Crawford, R. J. (1987). Rubber and plastic engineering design and application. Mechanical Engineering Pubns Ltd., London, United States.
Cutkosky, M. R., & Tenenbaum, J. M. (1987). CAD/CAM Integration through Concurrent Process and Product Design. American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, 25, 1–10.
Hassan, H., Regnier, N., Le Bot, C., & Defaye, G. (2010). 3D study of cooling system effect on the heat transfer during polymer injection molding. International Journal of Thermal Sciences, 49(1), 161–169. doi:10.1016/j.ijthermalsci.2009.07.006.
Gu, Y., Li, H., & Shen, C. (2001). Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics. Advances in Polymer Technology, 20(1), 14–21. doi:10.1002/1098-2329(200121)20:1<14::AID-ADV1001>3.0.CO;2-S.
Liu, S. J. (1996). Modeling and simulation of thermally induced stress and warpage in injection molded thermoplastics. Polymer Engineering & Science, 36(6), 807-818. doi:10.1002/pen.10468.
Amer, Y., Moayyedian, M., Hajiabolhasani, Z., & Moayyedian, L. (2012). Reducing warpage in injection moulding processes using taguchi method approach: ANOVA. Proceedings of the IASTED International Conference on Engineering and Applied Science, EAS 2012, 227–233. doi:10.2316/P.2012.785-089.
Jacques, M. S. (1982). An analysis of thermal warpage in injection molded flat parts due to unbalanced cooling. Polymer Engineering & Science, 22(4), 241–247. doi:10.1002/pen.760220405.
Leo, V., & Cuvelliez, C. (1996). The effect of the packing parameters, gate geometry, and mold elasticity on the final dimensions of a molded part. Polymer Engineering and Science, 36(15), 1961–1971. doi:10.1002/pen.10592.
Tarng, Y. S., & Yang, W. H. (1998). Application of the Taguchi method to the optimization of the submerged arc welding process. Materials and Manufacturing Processes, 13(3), 455–467. doi:10.1080/10426919808935262.
Connor, A. M. (1999). Parameter sizing for fluid power circuits using Taguchi methods. Journal of Engineering Design, 10(4), 377–390. doi:10.1080/095448299261263.
Liu, S. J., & Chang, C. Y. (2003). The influence of processing parameters on thin-wall gas assisted injection molding of thermoplastic materials. Journal of Reinforced Plastics and Composites, 22(8), 711–731. doi:10.1177/0731684403022008003.
Lin, C. L. (2004). Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics. Materials and Manufacturing Processes, 19(2), 209–220. doi:10.1081/AMP-120029852.
Moayyedian, M., Qazani, M. R. C., & Pourmostaghimi, V. (2023). Optimized injection-molding process for thin-walled polypropylene part using genetic programming and interior point solver. International Journal of Advanced Manufacturing Technology, 124(1–2), 297–313. doi:10.1007/s00170-022-10551-2.
He, W., Zhang, Y. F., Lee, K. S., Fuh, J. Y. H., & Nee, A. Y. C. (1998). Automated process parameter resetting for injection moulding: A fuzzy-neuro approach. Journal of Intelligent Manufacturing, 9(1), 17–27. doi:10.1023/A:1008843207417.
Chen, M. Y., Tzeng, H. W., Chen, Y. C., & Chen, S. C. (2008). The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 47(1), 119–126. doi:10.1016/j.isatra.2007.07.001.
Moayyedian, M., Derakhshandeh, J. F., & Lee, S. H. (2019). Optimization of strain measurement procedure based on fuzzy quality evaluation and Taguchi experimental design. SN Applied Sciences, 1(11), 150–160. doi:10.1007/s42452-019-1428-x.
Usman Jan, Q. M., Habib, T., Noor, S., Abas, M., Azim, S., & Yaseen, Q. M. (2020). Multi response optimization of injection moulding process parameters of polystyrene and polypropylene to minimize surface roughness and shrinkage’s using integrated approach of S/N ratio and composite desirability function. Cogent Engineering, 7(1), 1781424. doi:10.1080/23311916.2020.1781424.
Zhao, N. yang, Lian, J. yuan, Wang, P. fei, & Xu, Z. bin. (2022). Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: a review. International Journal of Advanced Manufacturing Technology, 120(1–2), 85–101. doi:10.1007/s00170-022-08859-0.
Guerra, N. B., Reis, T. M., Scopel, T., de Lima, M. S., Figueroa, C. A., & Michels, A. F. (2023). Influence of process parameters and post-molding condition on shrinkage and warpage of injection-molded plastic parts with complex geometry. International Journal of Advanced Manufacturing Technology, 128(1–2), 479–490. doi:10.1007/s00170-023-11782-7.
Fonseca, J. H., Jang, W., Han, D., Kim, N., & Lee, H. (2024). Strength and manufacturability enhancement of a composite automotive component via an integrated finite element/artificial neural network multi-objective optimization approach. Composite Structures, 327, 117694. doi:10.1016/j.compstruct.2023.117694.
Panchal, A., & Sheth, S. (2023). Optimization for Injection Molding Process Parameters Using Artificial Neural Network: A Critical Review. AIP Conference Proceedings, 2855(1), 090009. doi:10.1063/5.0168228.
Kengpol, A., & Tabkosai, P. (2024). Design of hybrid deep learning using TSA with ANN for cost evaluation in the plastic injection industry. Frontiers in Mechanical Engineering, 10, 1336828. doi:10.3389/fmech.2024.1336828.
EL Ghadoui, M., Mouchtachi, A., & Majdoul, R. (2023). A hybrid optimization approach for intelligent manufacturing in plastic injection molding by using artificial neural network and genetic algorithm. Scientific Reports, 13(1), 48679. doi:10.1038/s41598-023-48679-0.
Hermann, T., Niedziela, D., Salimova, D., & Schweiger, T. (2024). Predicting the fiber orientation of injection molded components and the geometry influence with neural networks. Journal of Composite Materials, 58(15), 1801–1811. doi:10.1177/00219983241248216.
Ez-Zahraouy, O., & Kamach, O. (2024). Quality Prediction in Injection Molding Using Machine Learning Methods. IEEE 15th International Colloquium of Logistics and Supply Chain Management, LOGISTIQUA 2024, 1–6. doi:10.1109/LOGISTIQUA61063.2024.10571516.
Seifert, L., Lockner, Y., & Hopmann, C. (2024). Investigations on the applicability of invertible neural networks (INN) in the injection moulding process. AIP Conference Proceedings, 3012(1), 020001. doi:10.1063/5.0193494.
Volke, J., & Heim, H. P. (2023). Evaluation of the injection molding process behavior during start-up and after parameter changes using dynamic time warping correspondences. Journal of Manufacturing Processes, 95, 183-203. doi:10.1016/j.jmapro.2023.03.076.
Cheng, J., Feng, Y., Tan, J., & Wei, W. (2008). Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 208(1–3), 222–228. doi:10.1016/j.jmatprotec.2007.12.114.
Goodship, V. (2004). Troubleshooting Injection Moulding. Smithers Rapra Technology, Shrewsbury, Shropshire, United Kingdom.
Chow, T. T., Zhang, G. Q., Lin, Z., & Song, C. L. (2002). Global optimization of absorption chiller system by genetic algorithm and neural network. Energy and Buildings, 34(1), 103–109. doi:10.1016/S0378-7788(01)00085-8.
Abidoye, L. K., & Das, D. B. (2015). Artificial neural network modeling of scale-dependent dynamic capillary pressure effects in two-phase flow in porous media. Journal of Hydroinformatics, 17(3), 446–461. doi:10.2166/hydro.2014.079.
Kalogirou, S. A. (1999). Applications of artificial neural networks in energy systems. A review. Energy Conversion and Management, 40(10), 1073–1087. doi:10.1016/S0196-8904(99)00012-6.
Holland, J. H. (1992). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. The University of Michigan Press, Michigan, United States.
Dinc, A., & Mamedov, A. (2022). Optimization of surface quality and machining time in micro-milling of glass. Aircraft Engineering and Aerospace Technology, 94(5), 676–686. doi:10.1108/AEAT-06-2021-0187.
Goldberg, D. E. (1989). Sizing Populations for Serial and Parallel Genetic Algorithms. In Proceedings of the Third International Conference on Genetic Algorithms. Proceedings of 3rd International Conference on Genetic Algorithms, 70-79. doi:10.5555/645512.657266.
Dinc, A., & Otkur, M. (2020). Emissions prediction of an aero-piston gasoline engine during surveillance flight of an unmanned aerial vehicle. Aircraft Engineering and Aerospace Technology, 93(3), 462–472. doi:10.1108/AEAT-09-2020-0196.
Moayyedian, M., Dinc, A., & Mamedov, A. (2021). Optimization of injection-molding process for thin-walled polypropylene part using artificial neural network and Taguchi techniques. Polymers, 13(23), 4158. doi:10.3390/polym13234158.
DOI: 10.28991/ESJ-2024-08-05-025
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mehdi Moayyedian