Fiber Optic Breakthrough: Terahertz Detection of Illegal Drugs

Khalid Sifulla Noor, Most. Momtahina Bani, Md. Safiul Islam, A.H.M. Iftekharul Ferdous, Md. Jakir Hossen, Abdullah Al-Mamun, Nasir Uddin Badhon

Abstract


The article presents an illegal drug detector that utilizes photonic crystal fiber (PCF). The fiber structure of the H-PCF comprises a dodecagonal core and circular air gaps in cladding areas. We have analyzed the designed terahertz (THz) frequency range utilizing the Finite Element Method (FEM) and the COMSOL Multiphysics application. The revised design has a high sensitivity in detecting amphetamine (n = 1.518) and cocaine (n = 1.5022) at a frequency of 3 THz, via detection rates of 99.43% and 99.20%, correspondingly. Furthermore, the suggested fiber, which operates at a frequency of 3 THz, has a relatively tiny confinement loss of 4.93×10-08 dB/m and 6.16×10-09 dB/m and a minimal effective material loss of construction of 0.0032 cm-1. In conclusion, it may be stated that drug misuse not only leads to immediate repercussions but also has severe and enduring impacts on human health, potentially resulting in fatality. Hence, it is imperative to accurately and effectively detect illicit substances. H-PCF architecture we offered is well-suited to detect illegal drugs.

 

Doi: 10.28991/ESJ-2024-08-06-019

Full Text: PDF


Keywords


Illegal Drug Sensing; Numerical Aperture (NA); Confinement Loss (CL); Relative Sensitivity (RS); Photonic Crystal Fiber (PCF).

References


Russell, P. (2003). Photonic crystal fibers. science, 299(5605), 358-362. doi:10.1126/science.1079280.

Hossain, M. S., Sen, S., & Hossain, M. M. (2021). Performance analysis of octagonal photonic crystal fiber (O-PCF) for various communication applications. Physica Scripta, 96(5), 55506. doi:10.1088/1402-4896/abe323.

Habib, M. A., Reyes-Vera, E., Villegas-Aristizabal, J., & Anower, M. S. (2020). Numerical modeling of a rectangular hollow-core waveguide for the detection of fuel adulteration in terahertz region. Fibers, 8(10), 63. doi:10.3390/fib8100063.

Russell, P. S. J. (2006). Photonic-crystal fibers. Journal of Lightwave Technology, 24(12), 4729-4749.

Wong, W. C., Zhou, W., Chan, C. C., Dong, X., & Leong, K. C. (2012). Cavity ringdown refractive index sensor using photonic crystal fiber interferometer. Sensors and Actuators, B: Chemical, 161(1), 108–113. doi:10.1016/j.snb.2011.09.056.

Habib, M. A., & Anower, M. S. (2019). Design and numerical analysis of highly birefringent single mode fiber in THz regime. Optical Fiber Technology, 47, 197–203. doi:10.1016/j.yofte.2018.11.006.

Habib, A., Rashed, A. N. Z., El-Hageen, H. M., & Alatwi, A. M. (2021). Extremely Sensitive Photonic Crystal Fiber–Based Cancer Cell Detector in the Terahertz Regime. Plasmonics, 16(4), 1297–1306. doi:10.1007/s11468-021-01409-6.

Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A., & Travers, J. C. (2014). Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photonics, 8(4), 278–286. doi:10.1038/nphoton.2013.312.

Ferdous, A. H. M. I., Anower, M. S., & Habib, M. A. (2021). A hybrid structured PCF for fuel adulteration detection in terahertz regime. Sensing and Bio-Sensing Research, 33, 100438. doi:10.1016/j.sbsr.2021.100438.

Habib, M. A., Reyes-Vera, E., Villegas-Aristizabal, J., & Anower, M. S. (2020). Numerical modeling of a rectangular hollow-core waveguide for the detection of fuel adulteration in terahertz region. Fibers, 8(10), 1–17. doi:10.3390/fib8100063.

Yang, T., Ding, C., Ziolkowski, R. W., & Guo, Y. J. (2021). An Epsilon-Near-Zero (ENZ) Based, Ultra-Wide Bandwidth Terahertz Single-Polarization Single-Mode Photonic Crystal Fiber. Journal of Lightwave Technology, 39(1), 223–232. doi:10.1109/JLT.2020.3022719.

Siegel, P. H. (2004). Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 52(10), 2438–2447. doi:10.1109/TMTT.2004.835916.

Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., Lavan, P., Weber, E., Doak, A. K., Côté, S., Shoichet, B. K., & Urban, L. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486(7403), 361–367. doi:10.1038/nature11159.

Reyes-Vera, E., Usuga-Restrepo, J., Jimenez-Durango, C., Montoya-Cardona, J., & Gomez-Cardona, N. (2018). Design of Low-loss and Highly Birefringent Porous-Core Photonic Crystal Fiber and Its Application to Terahertz Polarization Beam Splitter. IEEE Photonics Journal, 10(4), 5900413. doi:10.1109/JPHOT.2018.2860251.

Ho, L., Pepper, M., & Taday, P. (2008). Signatures and Fingerprints. Nature Photonics, 2(9), 541-543. doi:10.1038/nphoton.2008.174.

Hossain, M. S., Sen, S., & Hossain, M. M. (2020). Design of a chemical sensing circular photonic crystal fiber with high relative sensitivity and low confinement loss for terahertz (THz) regime. Optik, 222, 165359. doi:10.1016/j.ijleo.2020.165359.

Paul, B. K., Ahmed, K., Asaduzzaman, S., & Islam, M. S. (2017). Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis. Sensing and Bio-Sensing Research, 12, 36–42. doi:10.1016/j.sbsr.2016.11.005.

Arif, M. F. H., Hossain, M. M., Islam, N., & Khaled, S. M. (2019). A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sensing and Bio-Sensing Research, 22, 100252. doi:10.1016/j.sbsr.2018.100252.

Bise, R. T., & Trevor, D. J. (2005). Sol-gel derived microstructured fiber: Fabrication and characterization. Conference on Optical Fiber Communication, Technical Digest Series, 3, 269–271. doi:10.1109/ofc.2005.192772.

Yang, X., Lu, Y., Liu, B., & Yao, J. (2017). Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance. Plasmonics, 12(2), 489–496. doi:10.1007/s11468-016-0289-z.

Tahhan, S. R., & Aljobouri, H. K. (2023). Sensing of Illegal Drugs by Using Photonic Crystal Fiber in Terahertz Regime. Journal of Optical Communications, 44(s1), S505–S515. doi:10.1515/joc-2019-0291.

Islam, M. S., Sultana, J., Dinovitser, A., Ahmed, K., Ng, B. W. H., & Abbott, D. (2018). Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Optics Communications, 426, 341–347. doi:10.1016/j.optcom.2018.05.030.

Islam, M. S., Sultana, J., Ahmed, K., Islam, M. R., Dinovitser, A., Ng, B. W. H., & Abbott, D. (2018). A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sensors Journal, 18(2), 575–582. doi:10.1109/JSEN.2017.2775642.

Ferdous, A. H. M. I., Noor, K. S., Balamurugan, K., Ramkumar, G., Kumar, C. R., Mohan, S. B., Xavier, B. M., Hossain, M. S., Noor, S. Z. E., Sathi, B. N., Rashed, A. N. Z., & Hossain, A. (2023). Terahertz spectrum petrochemical sensing: a photonic crystal fiber refractive index hybrid structure approach. Journal of Optics (India). doi:10.1007/s12596-023-01553-8.

Shobug, M. A., Noor, K. S., Sagaya Raj, A. G., Ramkumar, G., Padmanaban, P., Mallan, S., Ferdous, A. H. M. I., Bani, M. M., & Rashed, A. N. Z. (2024). Fuel quality assurance based on hybrid hexagonal circular hollow core PCF sensing through management of terahertz region operation. Journal of Optics (India), 1-16. doi:10.1007/s12596-024-01756-7.

Iftekharul Ferdous, A. H. M., Noor, S. Z. E., Kalpana Devi, P., Kavitha, K. R., Anitha, G., Jayakumar, T., ... & Ahammad, S. H. (2024). Unlocking insights of oil derivatives with terahertz spectrum analysis: the hybrid refractive index rectangular core photonic crystal fiber perspective sensing. Journal of Optics, 53(4), 3655-3665. doi:10.1007/s12596-023-01520-3.

Bani, M. M., Noor, K. S., Ferdous, A. I., & Anower, M. S. (2024). High‐performance photonic crystal fibre biosensor for identifying Jurkat cells by refractive index analysis. IET Nanodielectrics. doi:10.1049/nde2.12086.

Ademgil, H., & Haxha, S. (2015). PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors (Switzerland), 15(12), 31833–31842. doi:10.3390/s151229891.

Morshed, M., Imran Hassan, M., Roy, T. K., Uddin, M. S., & Abdur Razzak, S. M. (2015). Microstructure core photonic crystal fiber for gas sensing applications. Applied Optics, 54(29), 8637. doi:10.1364/ao.54.008637.

Srivastava, D., Yadav, S., Mishra, A. C., Singh, S., Lohia, P., & Dwivedi, D. K. (2024). Numerical study of photonic crystal fiber-based optical biosensor for detection of cervical cancer. Journal of Optics (India), 53(2), 1155–1162. doi:10.1007/s12596-023-01254-2.

Bulbul, A. A. M., Rahaman, H., Biswas, S., Hossain, M. B., & Nahid, A. Al. (2020). Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the THz regime. Sensing and Bio-Sensing Research, 30, 100388. doi:10.1016/j.sbsr.2020.100388.

Hossain, M. B., Podder, E., Bulbul, A. A. M., & Mondal, H. S. (2020). Bane chemicals detection through photonic crystal fiber in THz regime. Optical Fiber Technology, 54, 102102. doi:10.1016/j.yofte.2019.102102.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-019

Refbacks

  • There are currently no refbacks.