Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation Approach
Abstract
Doi: 10.28991/ESJ-2024-08-05-01
Full Text: PDF
Keywords
References
Choolaeia, M., Caia, Q., Sladeb, R.C.T., Horri, B.A. (2018). Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method. Ceramics International, 44, 13286 - 13292. doi:10.1016/j.ceramint.2018.04.159.
Shah, M.A.K., Lu, Y., Mushtaq, N., Yousa, M., Lund, P., Asghar, M.I., Zhu, B. (2023). Designing Gadolinium-doped ceria electrolyte for low temperature electrochemical energy conversion. International Journal of Hydrogen Energy, 48(37), 14000-14011. doi:10.1016/j.ijhydene.2022.12.314.
El-Habib, A., Brioual, B., Zimou, J., Rossi, Z., Marjaoui, A., Zanouni, M., Aouni, A., Jbilou, M., Diani, M., Addou, M. (2024). Comparative studies on the structural, optical and electrochemical properties of Gd, Nd and In-doped CeO2 nanostructured thin films. Materials Science in Semiconductor Processing, 176, 108287. doi:10.1016/j.mssp.2024.108287.
Inaba, H., Tagawa, H. (1996). Ceria-based solid electrolytes. Solid State Ionics, 83(1-2), 1-16. doi:10.1016/0167-2738(95)00229-4.
Momin, N., Manjanna, J., Senthilkumar, S., Aruna, S.T. (2022). La-and Gd-Doped CeO2 Nanoparticles as Electrolyte Materials for Intermediate Temperature Solid Oxide Fuel Cells. Recent Trends in Electrochemical Science and Technology. Springer Proceedings in Materials, Volume 15, Springer, Singapore. doi:10.1007/978-981-16-7554-6_10.
Wang, K., Yang, J., An, B., Zhang, Q., Song, D., & Wang, Y. (2024). Mechanical and electrical properties Ge and Gd co-doped CeO2-based electrolyte for intermediate-temperature solid oxide fuel cells. Ceramics International, 50(20), 37698-37713. doi:10.1016/j.ceramint.2024.07.131.
Zhu, M., Du, C., Zhou, R., Li, D., Wang, S., Tian, C., & Chen, C. (2024). Synthesis and characterization of Ce1–x (Gd1/5Sm1/5Er1/5Y1/5Bi1/5) xO2–δ solid electrolyte for SOFCs. Journal of Rare Earths. doi:10.1016/j.jre.2024.03.002.
Sun, Q., Fu, Zh., Yang, Z. (2018) Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. Ceramics International, 44(4), 3707-3711. doi:10.1016/j.ceramint.2017.11.149.
Fuentes, R. O., Baker, R. T. (2008). Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes. International Journal of Hydrogen Energy, 33(13), 3480-3484. doi:10.1016/j.ijhydene.2007.10.026.
Kalinina, M., Dyuskina, D., Mjakin, S., Kruchinina, I., Shilova, O. (2023). Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells. Ceramics, 6(2), 1210-1226. doi:10.3390/ceramics6020073.
Wu, Y.-C., Lin, C.-C. (2014). The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment. International Journal of Hydrogen Energy, 39, 7988-8001. doi:10.1016/j.ijhydene.2014.03.063.
Tompsett, G.A, Sammes, N. M. (1997). Ceria–Yttria-Stabilized Zirconia Composite Ceramic Systems for Applications as Low-Temperature Electrolytes. Journal of the American Ceramic Society, 80(12), 3181–86. doi:10.1111/j.1151-2916.1997.tb03247.x.
Li, P., Chen, X., Li, Y., Schwank, J. W. (2019). A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catalysis Today, 327, 90-115. doi:10.1016/j.cattod.2018.05.059.
Swathi, S., Yuvakkumar, R., Senthil Kumar, P., Ravi, G., Thambidurai, M., Dang, C., Velauthapillai, D. (2023). Gadolinium doped CeO2 for efficient oxygen and hydrogen evolution reaction. Fuel, 310, Part A, 122319. doi:10.1016/j.fuel.2021.122319.
Kim, M., Park, G., Jo, K., Lee, H. (2023). Enhanced redox properties of Gd-doped CeO2–TiO2 induced by oxygen vacancies and disordered structure. Materials Today Chemistry, 29, 101440. doi:10.1016/j.mtchem.2023.101440.
Trovarelli, A. (1996). Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 38(4), 439-520. doi:10.1080/01614949608006464.
Bhalkikar, A., Wu, T.-S., Fisher, T. J., Sarella, A., Zhang, D., Gao, Y., Soo, Y.-L., Cheung, C. L. (2020). Tunable catalytic activity of gadolinium-doped ceria nanoparticles for pro-oxidation of hydrogen peroxide. Nano Research, 13, 2384–2392. doi:10.1007/s12274-020-2861-2.
Hernández, M. Y., Laguna, O. H., Centeno, M. A., Odriozola, J. A. (2011). Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria. Journal of Solid-State Chemistry, 184(11), 3014-3020. doi:10.1016/j.jssc.2011.09.018.
Pezeshkpour S., Abdullah A. Z., Salamatinia B., Horri B. A., B. (2017). Ionic–gelation synthesis of gadolinium doped ceria (Ce0.8Gd0.2O1.90) nanocomposite powder using sodium-alginate, Ceramics International, 43 (9), 7123-7135. doi:10.1016/j.ceramint.2017.02.145.
Wang, Z., Kale, G. M., Ghadiri, M. (2012). Synthesis and characterization of CexGd1−xO2−δ nanopowders employing an alginate mediated ion-exchange process. Chemical Engineering Journal, 198–199, 149-153. doi:10.1016/j.cej.2012.05.063.
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography, 14, 357-361. doi:10.1107/S0021889881009618.
Grover, V., Tyagi,A. K. (2004). Phase relations, lattice thermal expansion in CeO2 - Gd2O3 system, and stabilization of cubic gadolinia. Materials Research Bulletin, 39, 859-866. doi:10.1016/j.materresbull.2004.01.007.
Momma, K., Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276. doi:10.1107/S0021889811038970.
Arabaci, A. (2015). Effect of Sm and Gd dopants on structural characteristics and ionic conductivity of ceria. Ceramics International, 41, 5836-5842. doi:10.1016/j.ceramint.2015.01.013.
Rocha, R. A., Muccillo, E. N. S. (2003). Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique. Materials Research Bulletin, 38, 1979-1986. doi:10.1016/j.materresbull.2003.09.025.
Araújo, P. S., Belini, G. B., Mambrini, G. P., Fabio, M. Y., Waldman, W. R. (2019). Thermal degradation of calcium and sodium alginate: A greener synthesis towards calcium oxide micro/nanoparticles. International Journal of Biological Macromolecules, 140, 749-760. doi:10.1016/j.ijbiomac.2019.08.103.
Newkirk, A. E, Ifigenia, A. (1958). Drying and Decomposition of Sodium Carbonate. Analytical Chemistry Journal, 30, 982-984. doi:10.1021/ac60137a031.
Weast, R.C. (1985). Handbook of Chemistry and Physics. CRC Press, Boca Raton, United States.
Pathak, T. S., Yun, J. H., Lee, S. J., Baek, D. J., Paeng, K. J. (2010). Effect of solvent composition on porosity, surface morphology and thermal behavior of metal alginate prepared from algae (Undaria pinnatifida). Journal of Polymers and the Environment, 18, 45–56. doi:10.1007/s10924-009-0156-5.
Ankita, C. S., Singh, S., Kumar, L., Gupta, V., Kumar, S., Kumar, S, Kumar, P. (2024). Gd doped Cerium Oxide for organic dye degradation and tuning of magnetic properties. Materials Science and Engineering: B, 300, 117049. doi:10.1016/j.mseb.2023.117049.
Burroughs, P., Hamnett, A., Orchard, A. F., Thornton, G. (1976). Satellite structure in the X-Ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. Journal of the Chemical Society, Dalton Transactions, 17, 1686-1698. doi:10.1039/DT9760001686.
DOI: 10.28991/ESJ-2024-08-05-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Vania Ilcheva