Air Pollution Forecasting in a Regional Context for Sustainable Management
Abstract
Doi: 10.28991/ESJ-2024-08-05-024
Full Text: PDF
Keywords
References
Yin, S., Wang, X., Zhang, X., Guo, M., Miura, M., & Xiao, Y. (2019). Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Environmental Pollution, 254, 112949. doi:10.1016/j.envpol.2019.07.117.
Amnuaylojaroen, T., Inkom, J., Janta, R., & Surapipith, V. (2020). Long range transport of Southeast Asian PM2.5 pollution to northern thailand during high biomass burning episodes. Sustainability (Switzerland), 12(23), 1–14. doi:10.3390/su122310049.
Amnuaylojaroen, T. (2022). Prediction of PM2.5in an Urban Area of Northern Thailand Using Multivariate Linear Regression Model. Advances in Meteorology, 2022, 9. doi:10.1155/2022/3190484.
Amnuaylojaroen, T., Barth, M. C., Emmons, L. K., Carmichael, G. R., Kreasuwun, J., Prasitwattanaseree, S., & Chantara, S. (2014). Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia. Atmospheric Chemistry and Physics, 14(23), 12983–13012. doi:10.5194/acp-14-12983-2014.
Lee, H. H., Iraqui, O., Gu, Y., Yim, S. H. L., Chulakadabba, A., Tonks, A. Y. M., Yang, Z., & Wang, C. (2018). Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia. Atmospheric Chemistry and Physics, 18(9), 6141–6156. doi:10.5194/acp-18-6141-2018.
Lee, H. H., Iraqui, O., & Wang, C. (2019). The Impact of Future Fuel Consumption on Regional Air Quality in Southeast Asia. Scientific Reports, 9(1), 2648. doi:10.1038/s41598-019-39131-3.
Zafra, C., Ángel, Y., & Torres, E. (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 8(4), 660–668. doi:10.1016/j.apr.2017.01.002.
Zhang, L., Lin, J., Qiu, R., Hu, X., Zhang, H., Chen, Q., Tan, H., Lin, D., & Wang, J. (2018). Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecological Indicators, 95, 702–710. doi:10.1016/j.ecolind.2018.08.032.
Zhao, L., Li, Z., & Qu, L. (2022). Forecasting of Beijing PM2.5 with a hybrid ARIMA model based on integrated AIC and improved GS fixed-order methods and seasonal decomposition. Heliyon, 8(12), 12239. doi:10.1016/j.heliyon.2022.e12239.
Bhatti, U. A., Yan, Y., Zhou, M., Ali, S., Hussain, A., Qingsong, H., Yu, Z., & Yuan, L. (2021). Time Series Analysis and Forecasting of Air Pollution Particulate Matter (PM2.5): An SARIMA and Factor Analysis Approach. IEEE Access, 9, 41019–41031. doi:10.1109/ACCESS.2021.3060744.
Agarwal, A., & Sahu, M. (2023). Forecasting PM2.5 concentrations using statistical modeling for Bengaluru and Delhi regions. Environmental Monitoring and Assessment, 195(4), 502. doi:10.1007/s10661-023-11045-8.
Li, X., Feng, Y. J., & Liang, H. Y. (2017). The Impact of Meteorological Factors on PM2.5 Variations in Hong Kong. IOP Conference Series: Earth and Environmental Science, 78, 12003. doi:10.1088/1755-1315/78/1/012003.
Miao, Y., Liu, S., Guo, J., Yan, Y., Huang, S., Zhang, G., Zhang, Y., & Lou, M. (2018). Impacts of meteorological conditions on wintertime PM2.5 pollution in Taiyuan, North China. Environmental Science and Pollution Research, 25(22), 21855–21866. doi:10.1007/s11356-018-2327-1.
Amnuaylojaroen, T. (2022). Prediction of PM2.5in an Urban Area of Northern Thailand Using Multivariate Linear Regression Model. Advances in Meteorology, 2022, 9. doi:10.1155/2022/3190484.
Saiohai, J., Bualert, S., Thongyen, T., Duangmal, K., Choomanee, P., & Szymanski, W. W. (2023). Statistical PM2.5 Prediction in an Urban Area Using Vertical Meteorological Factors. Atmosphere, 14(3), 15. doi:10.3390/atmos14030589.
Jayamala, R., Shanmugapriya, N., Lalitha, K., & Vijayarajan, P. (2023). A deep learning model and optimization algorithm to forecasting environment monitoring of the air pollution. Global Nest Journal, 25(10), 47–55. doi:10.30955/gnj.004759.
Barid, A. J., & Hadiyanto, H. (2024). Hyperparameter optimization for hourly PM2.5 pollutant prediction. Journal of Emerging Science and Engineering, 2(1), e15. doi:10.61435/jese.2024.e15.
Mohammadi, F., Teiri, H., Hajizadeh, Y., Abdolahnejad, A., & Ebrahimi, A. (2024). Prediction of atmospheric PM2.5 level by machine learning techniques in Isfahan, Iran. Scientific Reports, 14(1), 2109. doi:10.1038/s41598-024-52617-z.
Chutiman, N., Busababodhin, P., P. Senapeng, P., Phoophiwfa, T. & Chiangpradit, M. (2019). Analysis Extreme Weather Event of Thailand with Spatial Modeling Theory of Extreme values: Case study in Mekong, Chi, Mun River Basin. Advances and Applications in Mathematical Sciences, 19(2), 129–138.
Busababodhin, P., Chiangpradit, M., Papukdee, N., Ruechairam, J., Ruanthaisong, K., & Guayjarernpanishk, P. (2021). Extreme Value Modeling of Daily Maximum Temperature with the r-Largest Order Statistics. The Journal of Applied Science, 20(1), 28–38. doi:10.14416/j.appsci.2021.01.003.
Gong, X., Wang, X., Li, Y., Ma, L., Li, M., & Si, H. (2022). Observed Changes in Extreme Temperature and Precipitation Indices on the Qinghai-Tibet Plateau, 1960–2016. Frontiers in Environmental Science, 10, 888937. doi:10.3389/fenvs.2022.888937.
Guayjarernpanishk, P., Chiangpradit, M., Kong-Ied, B., & Chutiman, N. (2023). Climate Forecasting Models for Precise Management Using Extreme Value Theory. Civil Engineering Journal (Iran), 9(7), 1753–1767. doi:10.28991/CEJ-2023-09-07-014.
Contzen, J., Dickhaus, T., & Lohmann, G. (2023). Long-term temporal evolution of extreme temperature in a warming Earth. PLoS ONE, 18(2), 280503. doi:10.1371/journal.pone.0280503.
Liu, H., Yang, F., & Wang, H. (2023). Research on Threshold Selection Method in Wave Extreme Value Analysis. Water (Switzerland), 15(20), 3648. doi:10.3390/w15203648.
Maruyama, F. (2023). Analyzing of the ENSO Index Using Extreme Value Theory. Journal of Geoscience and Environment Protection, 11(06), 96–105. doi:10.4236/gep.2023.116007.
Canton Enriquez, D., Niembro-Ceceña, J. A., Muñoz Mandujano, M., Alarcon, D., Arcadia Guerrero, J., Gonzalez Garcia, I., Montes Gutierrez, A. A., & Gutierrez-Lopez, A. (2022). Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset. Data in Brief, 40, 107783. doi:10.1016/j.dib.2021.107783.
Chutiman, N., Guayjarernpanishk, P., Chiangpradit, M., Busababodhin, P., Rattanawan, S., Phoophiwfa, T., & Kong-ied, B. (2022). The Risk Area Assessment on Re-emerging Diseases in Elderly People by Using Extreme Value Theory. International Journal of Mathematics and Computer Science, 17(1), 243–253.
de Haan, L., Mercadier, C., & Zhou, C. (2016). Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance and Stochastics, 20(2), 321–354. doi:10.1007/s00780-015-0287-6.
Gkillas, K., & Katsiampa, P. (2018). An application of extreme value theory to cryptocurrencies. Economics Letters, 164, 109–111. doi:10.1016/j.econlet.2018.01.020.
Chavez-Demoulin, V., Embrechts, P., & Hofert, M. (2016). An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates. Journal of Risk and Insurance, 83(3), 735–776. doi:10.1111/jori.12059.
Chavez-Demoulin, V., & Guillou, A. (2018). Extreme quantile estimation for β-mixing time series and applications. Insurance: Mathematics and Economics, 83, 59–74. doi:10.1016/j.insmatheco.2018.09.004.
Einmahl, J. J., Einmahl, J. H. J., & de Haan, L. (2019). Limits to Human Life Span Through Extreme Value Theory. Journal of the American Statistical Association, 114(527), 1075–1080. doi:10.1080/01621459.2018.1537912.
Tamošaitienė, J., Yousefi, V., & Tabasi, H. (2021). Project portfolio construction using extreme value theory. Sustainability (Switzerland), 13(2), 1–13. doi:10.3390/su13020855.
Drees, H., de Haan, L., & Turkman, F. (2018). Extreme value estimation for discretely sampled continuous processes. Extremes, 21(4), 533–550. doi:10.1007/s10687-018-0313-0.
Einmahl, J. H. J., Li, J., & Liu, R. Y. (2015). Bridging centrality and extremity: Refining empirical data depth using extreme value statistics. Annals of Statistics, 43(6), 2738–2765. doi:10.1214/15-AOS1359.
Vignotto, E., & Engelke, S. (2020). Extreme value theory for anomaly detection – the GPD classifier. Extremes, 23(4), 501–520. doi:10.1007/s10687-020-00393-0.
Just, A. C., Wright, R. O., Schwartz, J., Coull, B. A., Baccarelli, A. A., Tellez-Rojo, M. M., Moody, E., Wang, Y., Lyapustin, A., & Kloog, I. (2015). Using High-Resolution Satellite Aerosol Optical Depth to Estimate Daily PM2.5 Geographical Distribution in Mexico City. Environmental Science & Technology, 49(14), 8576–8584. doi:10.1021/acs.est.5b00859.
Ma, Z., Hu, X., Huang, L., Bi, J., & Liu, Y. (2014). Estimating ground-level PM2.5 in China using satellite remote sensing. Environmental Science & Technology, 48(13), 7436–7444. doi:10.1021/es5009399.
Coles, S. and Nadaraja, S. (2001). An Introduction to statistical modeling of extreme values. Springer, London. United Kingdom. doi:10.1007/978-1-4471-3675-0.
Zhang, J. (2002). Powerful Goodness-of-fit Tests Based on the Likelihood Ratio. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(2), 281–294. doi:10.1111/1467-9868.00337.
DOI: 10.28991/ESJ-2024-08-05-024
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Monchaya Chiangpradit, Nipaporn Chutiman, Butsakorn Kong-ied, Narumol Piwpuan, Pannarat Guayjarernpanishk