Bio-Mechatronics Development of Robotic Exoskeleton System With Mobile-Prismatic Joint Mechanism for Passive Hand Wearable-Rehabilitation

Mariela Vargas, J. Mayorga, B. Oscco, V. Cuyotupac, A. Nacarino, D. Allcca, L. Gamarra-Vásquez, G. Tejada-Marroquin, M. Reategui, R. R. Maldonado-Gómez, Y. Vasquez, Daira de la Barra, P. Tapia-Yanayaco, Sandra Charapaqui, Milton V. Rivera, R. Palomares, M. Ramirez-Chipana, Jorge Cornejo, José Cornejo, Jhony A. De La Cruz-Vargas

Abstract


The World Health Organization (WHO) estimates that 15 million people are affected by stroke each year, causing deterioration of the upper limb, which is reflected in 70-80% of them, decreasing the performance of daily activities and quality of life, mainly affecting hand functions. Thus, the purpose of this study is to present a high-quality alternative to recover muscle tone and mobility, consisting of a hand-exoskeleton for passive rehabilitation. It covers a motion protocol for each finger and pressure sensors to give a safety pressure range during the gripping function. The bio-design method covers standards (ISO 13485 and VDI 2206) based on biomechanic and anthropometric fundamentals, where Fusion 360 was used for mechanical development and electrical-electronic circuit schematics. The prototyping process was based on 3D printing using polylactic acid (PLA); also, the actuators were servomotors DS3218, the pressure sensors were RP-C7.6-LT, and the microcontroller was Arduino Nano. The system has been validated by the Institute of Research in Biomedical Sciences (INICIB) at the Ricardo Palma University, where the novelty of this work lies in the introduction of a new mobile-prismatic joint mechanism. In conclusion, favorable results were achieved regarding the complete flexion and extension of the fingers (91.6% acceptance rate, tested in 100 subjects), so the next step proposes that the wearable device will be used in the Physical Medicine and Rehabilitation Departments of Medical Centers.

 

Doi: 10.28991/ESJ-2024-08-06-02

Full Text: PDF


Keywords


Engineering Design; Medical Mechatronics; Hand Rehabilitation; Exoskeleton; Stroke.

References


Rodrigo, R., Fernandez-Gajardo, R., Gutierrez, R., Matamala, J., Carrasco, R., Miranda-Merchak, A., & Feuerhake, W. (2013). Oxidative Stress and Pathophysiology of Ischemic Stroke: Novel Therapeutic Opportunities. CNS & Neurological Disorders - Drug Targets, 12(5), 698–714. doi:10.2174/1871527311312050015.

Cortés-Pérez, I., Nieto-Escamez, F. A., & Obrero-Gaitán, E. (2020). Immersive virtual reality in stroke patients as a new approach for reducing postural disabilities and falls risk: A case series. Brain Sciences, 10(5), 296. doi:10.3390/brainsci10050296.

Lee, H. J., Song, J. K., Moon, J., Kim, K., Park, H. K., Kang, G. W., Shin, J. H., Kang, J., Kim, B. G., Lee, Y. H., Jeong, H. S., Heeyoung, L., Lee, W. K., Kim, S., & Park, Y. K. (2022). Health-related quality of life using WHODAS 2.0 and associated factors 1 year after stroke in Korea: a multi-centre and cross-sectional study. BMC Neurology, 22(1), 501. doi:10.1186/s12883-022-03032-2.

Aguirre, J., Perez, M. B., Palomares, R., & Cornejo, J. (2022). Ergonomic Bio-Design and Motion Simulation of a Mechatronic Orthosis System for Knee Rehabilitation. Proceedings of the 2022 IEEE 29th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022. doi:10.1109/INTERCON55795.2022.9870040.

Brogi, C., Secciani, N., Bartalucci, L., Di Iorio, F., Meli, E., Rinchi, M., Allotta, B., & Ridolfi, A. (2024). An original hybrid-architecture finger mechanism for wearable hand exoskeletons. Mechatronics, 98, 103117. doi:10.1016/j.mechatronics.2023.103117.

Aspilcueta, S., Tello, F., Panduro, R., Tello, C., Palomares, R., & Cornejo, J. (2022). Design and Manufacturing of Non-Invasive Ventilation System Connected with Remote Monitoring App for Oxygen Saturation Surveillance of COVID-19 Patients. 2022 IEEE 3rd Global Conference for Advancement in Technology, GCAT 2022. doi:10.1109/GCAT55367.2022.9972019.

Zavala Molina, D. A., Silva Cabrejos, R. J., Cornejo, J., Manrique, M. M., Rodriguez, R., & Palomares, R. (2023). Mechatronics Design and Bio-Motion Simulation of Trans-radial Arm Prosthesis Controlled by EMG Signals. 1st IEEE Colombian Caribbean Conference, C3, 1-7. doi:10.1109/C358072.2023.10436316.

Kabir, R., Sunny, M. S. H., Ahmed, H. U., & Rahman, M. H. (2022). Hand Rehabilitation Devices: A Comprehensive Systematic Review. Micromachines, 13(7), 1033. doi:10.3390/mi13071033.

Nope-Giraldo, R. M., Illapuma-Ccallo, L. A., Cornejo, J., Palacios, P., Napan, J. L., Cruz, F., Palomares, R., Cornejo-Aguilar, J. A., & Vargas, M. (2021). Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances. Pan American Health Care Exchanges, PAHCE, 2021-May. doi:10.1109/GMEPE/PAHCE50215.2021.9434874.

Meza, B. H., Fernandez, H. J., Cornejo, J., & Palomares, R. (2021). Mechatronic Design and Kinematic Analysis of Delta Robot applied on Supermarkets for Social Distancing during COVID-19 Pandemic. Proceedings of the 2021 IEEE Engineering International Research Conference, EIRCON 2021. doi:10.1109/EIRCON52903.2021.9613165.

Juarez, J. A., Palomares, R., Cornejo, J., & Bustinza, R. R. (2021). Biomedical Mechatronic Device iTakuna: Smart Embedded System for Electric Wheelchair used by Paraplegic Patients. Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021. doi:10.1109/INTERCON52678.2021.9532609.

Hurtado, M., Marquez, J., Sotelo, P., Cornejo, J., & Palomares, R. (2022). Mechanic Design and Kinematic Simulation of Tri-Star Wheeled Mobile Robot for COVID-19 Using UV-C Disinfection for Public Transport. 2022 1st International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2022, 1-8. doi:10.1109/ICEEICT53079.2022.9768432.

Cornejo, J., Cornejo, J., Vargas, M., Carvajal, M., Perales, P., Rodríguez, G., Macias, C., Canizares, S., Silva, P., Cubas, R. F., Jimenez, M. C., Lincango, E. P., Serrano, L., Palomares, R., Aspilcueta, S., Castillo-Larios, R., Evans, L. A., De La Cruz-Vargas, J. A., Risk, M., … Elli, E. F. (2024). SY-MIS Project: Biomedical Design of Endo-Robotic and Laparoscopic Training System for Surgery on the Earth and Space. Emerging Science Journal, 8(2), 372–393. doi:10.28991/ESJ-2024-08-02-01.

Vergaray, R. A., Del Aguila, R. F., Avellaneda, G. A., Palomares, R., Cornejo, J., & Cornejo-Aguilar, J. A. (2021). Mechatronic System Design and Development of iROD: EMG Controlled Bionic Prosthesis for Middle-Third Forearm Amputee. ETCM 2021 - 5th Ecuador Technical Chapters Meeting, 1-5. doi:10.1109/ETCM53643.2021.9590715.

Silva, J., Silva, M., Soares, B., Quintão, C., Londral, A. R., & Quaresma, C. (2024). Multi-activity 3D printed assistive technology in children: a case study. Assistive Technology, 1-6. doi:10.1080/10400435.2024.2328091.

Morales-Mere, J., Chessa, J. J., Palomares, R., & Cornejo, J. (2020). Mixed Reality System for Education and Innovation in Prehospital Interventions at Peruvian Fire Department. Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020, 1-4. doi:10.1109/INTERCON50315.2020.9220259.

Cornejo, J., Vargas, M., & Cornejo, J. (2020). Innovative Applications of Robotics and Biomedical Sciences in Public Health during the Covid-19 Pandemic. Revista de La Facultad de Medicina Humana, 20(4), 756–757.

Zhang, L. Q., Park, H. S., & Ren, Y. (2009). Shoulder, elbow and wrist stiffness in passive movement and their independent control in voluntary movement post stroke. In 2009 IEEE International Conference on Rehabilitation Robotics 805-811. doi:10.1109/ICORR.2009.5209489.

Rozas Llontop, D. A., Cornejo, J., Palomares, R., & Cornejo-Aguilar, J. A. (2020). Mechatronics Design and Simulation of Anthropomorphic Robotic Arm mounted on Wheelchair for Supporting Patients with Spastic Cerebral Palsy. 2020 IEEE International Conference on Engineering Veracruz, ICEV 2020. doi:10.1109/ICEV50249.2020.9289665.

Quezada, J. P., Cabrera, K. S., Cornejo, J., Palomares, R., Cornejo-Aguilar, J. A., & Vargas, M. (2023). Mechatronic Conceptual Design and Kinematic Analysis of Serial-Type Robotic Exoskeleton for Assisted Rehabilitation Therapy on Upper Limbs. 2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023. doi:10.1109/ICAECT57570.2023.10118243.

Li, J., Zheng, R., Zhang, Y., & Yao, J. (2011). iHandRehab: An interactive hand exoskeleton for active and passive rehabilitation. IEEE International Conference on Rehabilitation Robotics, 1-6. doi:10.1109/ICORR.2011.5975387.

Rodriguez, V., Sanchez, L., Palomares, R., & Cornejo, J. (2022). Ergonomic Bio-Design and Motion Simulation of a Mechatronic Orthosis System for Elbow Rehabilitation. Proceedings of the 2022 IEEE 29th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022. doi:10.1109/INTERCON55795.2022.9870083.

Hsu, H. Y., Koh, C. L., Yang, K. C., Lin, Y. C., Hsu, C. H., Su, F. C., & Kuo, L. C. (2024). Effects of an assist-as-needed equipped Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) on upper limb function in patients with chronic stroke. Journal of NeuroEngineering and Rehabilitation, 21(1), 5. doi:10.1186/s12984-023-01298-2.

Martins, H. V. P., Setti, J. A. P., Guimarães, C., & Campos, D. P. (2023). Development of a robotic orthosis for fingers flexion motion by surface myoelectric control: Open source prototype. Biomedical Signal Processing and Control, 85, 105014. doi:10.1016/j.bspc.2023.105014.

Buchholz, B., Armstrong, T. J., & Goldstein, S. A. (1992). Anthropometric data for describing the kinematics of the human hand. Ergonomics, 35(3), 261–273. doi:10.1080/00140139208967812.

Palacios, P., Cornejo, J., Rivera, M. V., Napan, J. L., Castillo, W., Ticllacuri, V., Reina, A. D., Chaves-Jimenez, A., Jamanca-Lino, G., & Chavez, J. C. (2021). Biomechatronic embedded system design of sensorized glove with soft robotic hand exoskeleton used for rover rescue missions on mars. 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021 - Proceedings. doi:10.1109/IEMTRONICS52119.2021.9422634.

Ben, I. A., Bouteraa, Y., & Rekik, C. (2017). Design and development of 3d printed myoelectric robotic exoskeleton for hand rehabilitation. International Journal on Smart Sensing and Intelligent Systems, 10(2), 341–366. doi:10.21307/ijssis-2017-215.

Bouteraa, Y., Abdallah, I. Ben, & Elmogy, A. M. (2019). Training of Hand Rehabilitation Using Low Cost Exoskeleton and Vision-Based Game Interface. Journal of Intelligent and Robotic Systems: Theory and Applications, 96(1), 31–47. doi:10.1007/s10846-018-0966-6.

Megalingam, R. K., Apuroop, K. G. S., & Boddupalli, S. (2017). Single DoF Hand Orthosis for Rehabilitation of Stroke and SCI Patients. IOP Conference Series: Materials Science and Engineering, 225(1). doi:10.1088/1757-899X/225/1/012202.

Sarac, M., Solazzi, M., Sotgiu, E., Bergamasco, M., & Frisoli, A. (2017). Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica, 52(3), 749–761. doi:10.1007/s11012-016-0530-z.

Khantan, M., Avery, M., Aung, P. T., Zarin, R. M., Hammelef, E., Shawki, N., Serruya, M. D., & Napoli, A. (2023). The NuroSleeve, a user-centered 3D printed hybrid orthosis for individuals with upper extremity impairment. Journal of NeuroEngineering and Rehabilitation, 20(1), 103. doi:10.1186/s12984-023-01228-2.

Yurkewich, A., Hebert, D., Wang, R. H., & Mihailidis, A. (2019). Hand extension robot orthosis (hero) glove: Development and testing with stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 916–926. doi:10.1109/TNSRE.2019.2910011.

Risangtuni, A. G., Suprijanto, S., Nazaruddin, Y. Y., & Mahyuddin, A. I. (2023). Dual-mode 3D printed dynamic wrist driven orthosis for hand therapy exercises. Frontiers in Mechanical Engineering, 9, 1286304. doi:10.3389/fmech.2023.1286304.

Rose, C. G., & O’Malley, M. K. (2019). Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity. IEEE Robotics and Automation Letters, 4(1), 73–80. doi:10.1109/LRA.2018.2878931.

Iqbal, J., Khan, H., Tsagarakis, N. G., & Caldwell, D. G. (2014). A novel exoskeleton robotic system for hand rehabilitation - Conceptualization to prototyping. Biocybernetics and Biomedical Engineering, 34(2), 79–89. doi:10.1016/j.bbe.2014.01.003.

Zhang, F., Hua, L., Fu, Y., Chen, H., & Wang, S. (2014). Design and development of a hand exoskeleton for rehabilitation of hand injuries. Mechanism and Machine Theory, 73, 103–116. doi:10.1016/j.mechmachtheory.2013.10.015.

Chen, Z. H., Yang, Y. L., Lin, K. W., Sun, P. C., & Chen, C. S. (2022). Functional Assessment of 3D-Printed Multifunction Assistive Hand Device for Chronic Stroke Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1261–1266. doi:10.1109/TNSRE.2022.3173034.

Triwiyanto, T., Luthfiyah, S., Putu Alit Pawana, I., Ali Ahmed, A., & Andrian, A. (2023). Bilateral mode exoskeleton for hand rehabilitation with wireless control using 3D printing technology based on IMU sensor. HardwareX, 14, 432. doi:10.1016/j.ohx.2023.e00432.

Chiri, A., Vitiello, N., Giovacchini, F., Roccella, S., Vecchi, F., & Carrozza, M. C. (2012). Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Transactions on Mechatronics, 17(5), 884–894. doi:10.1109/TMECH.2011.2144614.

Park, C. B., & Park, H. S. (2023). Portable 3D-printed hand orthosis with spatial stiffness distribution personalized for assisting grasping in daily living. Frontiers in Bioengineering and Biotechnology, 11, 895745. doi:10.3389/fbioe.2023.895745.

Rudd, G., Daly, L., Jovanovic, V., & Cuckov, F. (2019). A low-cost soft robotic hand exoskeleton for use in therapy of limited hand-motor function. Applied Sciences (Switzerland), 9(18), 3751. doi:10.3390/app9183751.

Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., & Walsh, C. J. (2015). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135–143. doi:10.1016/j.robot.2014.08.014.

Hennig, R., Gantenbein, J., Dittli, J., Chen, H., Lacour, S. P., Lambercy, O., & Gassert, R. (2020). Development and Evaluation of a Sensor Glove to Detect Grasp Intention for a Wearable Robotic Hand Exoskeleton. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2020-November, 19–24. doi:10.1109/BioRob49111.2020.9224463.

Nisal, K., Ruhunge, I., Subodha, J., Perera, C. J., & Lalitharatne, T. D. (2017). Design, implementation and performance validation of UOMPro artificial hand: Towards affordable hand prostheses. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 909–912. doi:10.1109/EMBC.2017.8036972.

Leccia, A., Sallam, M., Grazioso, S., Caporaso, T., Di Gironimo, G., & Ficuciello, F. (2023). Development and testing of a virtual simulator for a myoelectric prosthesis prototype – the PRISMA Hand II – to improve its usability and acceptability. Engineering Applications of Artificial Intelligence, 121, 105853. doi:10.1016/j.engappai.2023.105853.

Wang, X., Zhao, J., Yang, D., Li, N., Sun, C., & Liu, H. (2010). Biomechatronic approach to a multi-fingered hand prosthesis. 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2010, 209–214. doi:10.1109/BIOROB.2010.5627734.

Bos, R. A., Nizamis, K., Koopman, B. F. J. M., Herder, J. L., Sartori, M., & Plettenburg, D. H. (2020). A Case Study with Symbihand: An sEMG-Controlled Electrohydraulic Hand Orthosis for Individuals with Duchenne Muscular Dystrophy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 258–266. doi:10.1109/TNSRE.2019.2952470.

Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V. P., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., & Frisoli, A. (2015). An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Transactions on Haptics, 8(2), 140–151. doi:10.1109/TOH.2015.2417570.

Wege, A., Kondak, K., & Hommel, G. (2005). Mechanical design and motion control of a hand exoskeleton for rehabilitation. IEEE International Conference on Mechatronics and Automation, ICMA 2005, 155–159. doi:10.1109/icma.2005.1626539.

Park, S., Weber, L., Bishop, L., Stein, J., & Ciocarlie, M. (2018). Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients. Proceedings - IEEE International Conference on Robotics and Automation, 2281–2287. doi:10.1109/ICRA.2018.8461069.

FDA. (2006). computerized cognitive assessment aid for concussion. TPLC Product Code Report, United States. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm?id=4069 (accessed on November 2024).

Rzyman, G., Szkopek, J., Redlarski, G., & Palkowski, A. (2020). Upper limb bionic orthoses: General overview and forecasting changes. Applied Sciences (Switzerland), 10(15), 5323. doi:10.3390/APP10155323.

ISO 13485:2016 (2016). Medical devices — Quality management systems — Requirements for regulatory purposes. Available online: https://www.iso.org/standard/59752.html (accessed on November 2024).

Neubauer, R., Schröttner, J., & Baumgartner, C. (2023). Safety Requirements for Medical Devices in Compliance with European Standards. In Medical Devices and In Vitro Diagnostics: Requirements in Europe, 157–186. doi:10.1007/978-3-031-22091-3_4.

Janic, V., Simons, H., & Khan, T. (2023). Medical Device AI Regulatory Expectations. AI in Clinical Medicine: A Practical Guide for Healthcare Professionals, 379–394. doi:10.1002/9781119790686.ch36.

Östlund, B., Malvezzi, M., Frennert, S., Funk, M., Gonzalez-Vargas, J., Baur, K., Alimisis, D., Thorsteinsson, F., Alonso-Cepeda, A., Fau, G., Haufe, F., Di Pardo, M., & Moreno, J. C. (2023). Interactive robots for health in Europe: Technology readiness and adoption potential. Frontiers in Public Health, 11, 979225. doi:10.3389/fpubh.2023.979225.

Walsh, P. P., Murphy, E., & Horan, D. (2020). The role of science, technology and innovation in the UN 2030 agenda. Technological Forecasting and Social Change, 154, 119957. doi:10.1016/j.techfore.2020.119957.

Graessler, I., & Hentze, J. (2020). The new V-Model of VDI 2206 and its validation das Neue V-Modell der VDI 2206 und seine Validierung. At-Automatisierungstechnik, 68(5), 312–324. doi:10.1515/auto-2020-0015.

Cornejo, J., Perales-Villarroel, J. P., Sebastian, R., & Cornejo-Aguilar, J. A. (2020). Conceptual design of space biosurgeon for robotic surgery and aerospace medicine. IEEE Andescon, Andescon 2020. doi:10.1109/ANDESCON50619.2020.9272122.

Cornejo, J., Huamanchahua, D., Huaman-Vizconde, S., Terrazas-Rodas, D., Sierra-Huertas, J., Janampa-Espinoza, A., Gonzales, J., & Cardona, M. (2021). Mechatronic exoskeleton systems for supporting the biomechanics of shoulder-elbow-wrist: An innovative review. 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021 - Proceedings. doi:10.1109/IEMTRONICS52119.2021.9422660.

Kumar, K., & Davim, J. P. (2018). Design and optimization of mechanical engineering products. Design and Optimization of Mechanical Engineering Products. IGI Global, 1-23. doi:10.4018/978-1-5225-3401-3.

Cornejo, J., Cornejo-Aguilar, J. A., Vargas, M., Helguero, C. G., Milanezi De Andrade, R., Torres-Montoya, S., Asensio-Salazar, J., Rivero Calle, A., Martínez Santos, J., Damon, A., Quiñones-Hinojosa, A., Quintero-Consuegra, M. D., Umaña, J. P., Gallo-Bernal, S., Briceño, M., Tripodi, P., Sebastian, R., Perales-Villarroel, P., De La Cruz-Ku, G., … Russomano, T. (2022). Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BioMed Research International, 2022, 6797745. doi:10.1155/2022/6797745.

Cornejo, J., Cornejo-Aguilar, J. A., Sebastian, R., Perales, P., Gonzalez, C., Vargas, M., & Elli, E. F. (2021). Mechanical Design of a Novel Surgical Laparoscopic Simulator for Telemedicine Assistance and Physician Training during Aerospace Applications. 3rd IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, ECBIOS 2021, 53–56. doi:10.1109/ECBIOS51820.2021.9510753.

Cornejo, J., Cornejo-Aguilar, J. A., & Palomares, R. (2019). Biomedik Surgeon: Surgical Robotic System for Training and Simulation by Medical Students in Peru. Proceedings of the 2019 International Conference on Control of Dynamical and Aerospace Systems, XPOTRON 2019. doi:10.1109/XPOTRON.2019.8705717.

Ho, N. S. K., Tong, K. Y., Hu, X. L., Fung, K. L., Wei, X. J., Rong, W., & Susanto, E. A. (2011). An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation. IEEE International Conference on Rehabilitation Robotics, 1-5. doi:10.1109/ICORR.2011.5975340.

Cornejo, J., Cornejo-Aguilar, J. A., Gonzalez, C., & Sebastian, R. (2021). Mechanical and Kinematic Design of Surgical Mini Robotic Manipulator used into SP-LAP Multi-DOF Platform for Training and Simulation. Proceedings of the IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021. doi:10.1109/INTERCON52678.2021.9532965.

Cornejo, J., Barrera, S., Herrera Ruiz, C. A., Gutierrez, F., Casasnovas, M. O., Kot, L., Solis, M. A., Larenas, R., Castro-Nieny, F., Arbulú Saavedra, M. R., Rodríguez Serrezuela, R., Muñoz Londoño, Y., Serna, A., Ortega-Aranda, D., Aranda-Miramontes, S., Chang, I., Cardona, M., Carrasquilla-Batista, A., Palomares, R., … L’huillier, E. A. (2023). Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation. Emerging Science Journal, 7(4), 1430–1458. doi:10.28991/ESJ-2023-07-04-025.

Cornejo, J., Cornejo Aguilar, J. A., & Perales Villarroel, J. P. (2019). International Innovations in Medical Robotics to Improve Patient Management in Peru. Journal of the Faculty of Human Medicine, 19(4), 105–113. doi:10.25176/rfmh.v19i4.2349.

Vargas, M., Cornejo, J., & Correa-López, L. E. (2016). Biomedical Engineering: The Technological Revolution for the Future of the Peruvian Health System. Journal of the Faculty of Human Medicine, 16(3). doi:10.25176/rfmh.v16.n3.659.

Wang, L., Meydan, T., & Williams, P. I. (2017). A two-axis goniometric sensor for tracking finger motion. Sensors (Switzerland), 17(4), 770. doi:10.3390/s17040770.

Zhang, F., Fu, Y., Zhang, Q., & Wang, S. (2015). Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Bio-Medical Materials and Engineering, 26(s1), S665–S672. doi:10.3233/BME-151358.

Ticllacuri, V., Lino, G. J., Diaz, A. B., & Cornejo, J. (2020). Design of Wearable Soft Robotic System for Muscle Stimulation Applied in Lower Limbs during Lunar Colonization. Proceedings of the 2020 IEEE 27th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2020. doi:10.1109/INTERCON50315.2020.9220206.

Palacios, P., Cornejo, J., Chavez, J. C., Cornejo, C., Cornejo, J., Vargas, M., Vargas-Cuentas, N. I., Roman-Gonzalez, A., & Valdivia-Silva, J. (2023). Mechatronics Design and Development of T-EVA: Bio-Sensorized Space System for Astronaut’s Upper Body Temperature Monitoring during Extravehicular Activities on the Moon and Mars. International Journal of Advanced Computer Science and Applications, 14(9), 661–672. doi:10.14569/IJACSA.2023.0140969.

Bayoumi, H., Awad, M. I., & Maged, S. A. (2023). An Improved Approach for Grasp Force Sensing and Control of Upper Limb Soft Robotic Prosthetics. Micromachines, 14(3), 596. doi:10.3390/mi14030596.

Kang, Z., Yang, J., Li, G., & Zhang, Z. (2020). An Automatic Garbage Classification System Based on Deep Learning. IEEE Access, 8, 140019–140029. doi:10.1109/ACCESS.2020.3010496.

Jia, Z. N., Hao, C. Z., Sun, J. B., & Liu, X. Y. (2014). Kinematics and dynamics analysis of piston-connecting rod mechanism of internal combustion engine. Applied Mechanics and Materials, 470, 539–542. doi:10.4028/www.scientific.net/AMM.470.539.

Zavala Molina, D. A., Silva Cabrejos, R. J., Murillo Manrique, M. F., Rodríguez Bustinza, R. R., Cornejo Aguilar, J. L., & Palomares Orihuela, R. J. (2023). Geometric Modeling and Kinematic Simulation of Hand Prostheses for Adult Patients with Transradial Amputation. Perfiles de Ingeniería, 20(20), 179–200. doi:10.31381/perfilesingenieria.v20i20.6020.

Corke, P. I. (2007). A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE Transactions on Robotics, 23(3), 590–594. doi:10.1109/TRO.2007.896765.

Cobos, S., Ferre, M., Sanchéz-Urán, M. A., Ortego, J., & Peña, C. (2008). Efficient human hand kinematics for manipulation tasks. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2246–2251. doi:10.1109/IROS.2008.4651053.

Palacios, P., Castillo, W., Rivera, M. V., & Cornejo, J. (2020). Design of T-EVA: Wearable Temperature Monitoring System for Upper Limbs during Extravehicular Activities on Mars. Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020. doi:10.1109/EIRCON51178.2020.9254027.

Camargo, J. C., Machado, Á. R., Almeida, E. C., & Silva, E. F. M. S. (2019). Mechanical properties of PLA-graphene filament for FDM 3D printing. International Journal of Advanced Manufacturing Technology, 103(5–8), 2423–2443. doi:10.1007/s00170-019-03532-5.

Barbosa, W. S., Gioia, M. M., Temporão, G. P., Meggiolaro, M. A., & Gouvea, F. C. (2023). Impact of multi-lattice inner structures on FDM PLA 3D printed orthosis using Industry 4.0 concepts. International Journal on Interactive Design and Manufacturing, 17(1), 371–383. doi:10.1007/s12008-022-00962-6.

Borja, J. C., Palomares, R., Cornejo, J., & Castro, R. (2023). Radio Frequency Controlled Hexapod Robot with Bioinspired Kinematic Configuration used for Rescue Activities after Landslides in Urban Areas. 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, 1-6. doi:10.1109/ICAECT57570.2023.10117856.

Den Dekker, H. A., Beckers, N. W. M., Keemink, A. Q. L., Van Der Kooij, H., & Stienen, A. H. A. (2016). Assessing the usability of remote control servos for admittance-controlled haptic finger manipulators. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2016-July, 1260–1265. doi:10.1109/BIOROB.2016.7523804.

Leong, L., Chai, S. C., Howell, J. W., & Hirth, M. J. (2023). Orthotic intervention options to non-surgically manage adult and pediatric trigger finger: A systematic review. Journal of Hand Therapy, 36(2), 302–315. doi:10.1016/j.jht.2023.05.016.

Zavala, P. (2014). A dowel exercise tool to improve finger range of motion. Journal of Hand Therapy, 27(1), 63–66. doi:10.1016/j.jht.2013.08.002.

Rivera, M. V., Cornejo, J., Huallpayunca, K., Diaz, A. B., Ortiz-Benique, Z. N., Reina, A. D., Jamanca Lino, G., & Ticllacuri, V. (2020). Human space medicine: Physiological performance and countermeasures to improve astronaut health. Revista de La Facultad de Medicina Humana, 20(2), 131–142. doi:10.25176/rfmh.v20i2.2920.

Rivera, M. V., Vargas, M., Cornejo, J., Plascencia, P. V., Guillen, K., Maquera, E., Cornejo, J., Russomano, T., & Cinelli, I. (2024). Space Nursing for the Future Management of Astronaut Health in other Planets: A Literature Review. The Open Nursing Journal, 18(1), e18744346289848. doi:10.2174/0118744346289848240328074640.

Villafañe, J. H., Taveggia, G., Galeri, S., Bissolotti, L., Mullè, C., Imperio, G., Valdes, K., Borboni, A., & Negrini, S. (2018). Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients with Hand Paralysis after Stroke: A Randomized Clinical Trial. Hand, 13(1), 95–102. doi:10.1177/1558944717692096.

Casas, R., Sandison, M., Chen, T., & Lum, P. S. (2021). Clinical Test of a Wearable, High DOF, Spring Powered Hand Exoskeleton (HandSOME II). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1877–1885. doi:10.1109/TNSRE.2021.3110201.

Sandison, M., Phan, K., Casas, R., Nguyen, L., Lum, M., Pergami-Peries, M., & Lum, P. S. (2020). HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for at Home Stroke Rehabilitation. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 4867–4872. doi:10.1109/EMBC44109.2020.9175332.

Kuo, L. C., Yang, K. C., Lin, Y. C., Lin, Y. C., Yeh, C. H., Su, F. C., & Hsu, H. Y. (2023). Internet of Things (IoT) Enables Robot-Assisted Therapy as a Home Program for Training Upper Limb Functions in Chronic Stroke: A Randomized Control Crossover Study. Archives of Physical Medicine and Rehabilitation, 104(3), 363–371. doi:10.1016/j.apmr.2022.08.976.

Hsu, C. Y., Wu, C. M., Huang, C. C., Shie, H. H., & Tsai, Y. S. (2022). Feasibility and Potential Effects of Robot-Assisted Passive Range of Motion Training in Combination with Conventional Rehabilitation on Hand Function in Patients with Chronic Stroke. Journal of Rehabilitation Medicine, 54. doi:10.2340/jrm.v54.1407.

Huang, Y., Nam, C., Li, W., Rong, W., Xie, Y., Liu, Y., Qian, Q., & Hu, X. (2020). A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial. Biomedical Signal Processing and Control, 56, 101723. doi:10.1016/j.bspc.2019.101723.

Dudley, D. R., Knarr, B. A., Siu, K. C., Peck, J., Ricks, B., & Zuniga, J. M. (2021). Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study. Disability and Rehabilitation: Assistive Technology, 16(2), 209–213. doi:10.1080/17483107.2019.1646823.

Borboni, A., Villafañe, J. H., Mullè, C., Valdes, K., Faglia, R., Taveggia, G., & Negrini, S. (2017). Robot-Assisted Rehabilitation of Hand Paralysis After Stroke Reduces Wrist Edema and Pain: A Prospective Clinical Trial. Journal of Manipulative and Physiological Therapeutics, 40(1), 21–30. doi:10.1016/j.jmpt.2016.10.003.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-02

Refbacks

  • There are currently no refbacks.