Breast Cancer Prediction Using Transfer Learning-Based Classification Model

Sheeba Armoogum, Kezhilen Motean, Deshinta Arrova Dewi, Tri Basuki Kurniawan, Jureerat Kijsomporn

Abstract


Breast cancer is currently the most prevalent type of cancer in women, with a growing number of fatalities worldwide. Different imaging methods like mammography, computed tomography, Magnetic Resonance Imaging, ultrasound, and biopsies assist in detecting breast cancer. Recent developments in deep learning have revolutionized breast cancer pathology by facilitating accurate image categorization. This study introduces a novel approach to enhance detection and classification using the Convolutional Neural Network Deep Learning method and Transfer Learning to create a high-speed, accurate image classification model. The model is trained on pre-processed data subjected to thorough analysis and augmentation to ensure the quality of inputs. The experimental results from the Breast Ultrasound Image dataset indicate that our model, with a 0.1 test size ratio, outperforms its counterparts. It achieved an accuracy of 90.12%, with a loss of 0.2641, validation accuracy of 90.15%, and validation loss of 0.31, evidencing its superior classification capability. This research introduces an innovative approach to the automated diagnosis of breast cancer. By combining CNN, Transfer Learning, and data augmentation, we have developed a desktop application that expedites the classification process and significantly improves accuracy. This advancement represents a key development in machine learning applications for breast cancer prognostics and diagnostics.

 

Doi: 10.28991/ESJ-2024-08-06-014

Full Text: PDF


Keywords


Breast Cancer; Machine Learning; Deep Learning; Transfer Learning; CNN; BUSI; Process Innovation; Public Health.

References


W.H.O. (2023). Global Breast Cancer Initiative Implementation Framework: Assessing, Strengthening and Scaling up of Services for the Early Detection and Management of Breast Cancer. World Health Organization (WHO), Genève, Switzerland. Available online: https://www.who.int/publications/i/item/9789240065987 (accessed on November 2024).

MNCR. (2024). Cancer in the Republic of Mauritius Incidence and Mortality Study for 2022 Report of the National Cancer Registry. Mauritius National Cancer Registry, Port Louis, Mauritius. Available online: https://health.govmu.org/health/wp-content/uploads/2024/02/MNCR-2022-REPORT-final-with-cover-updated-3.pdf (accessed on November 2024).

Liu, L., Feng, W., Chen, C., Liu, M., Qu, Y., & Yang, J. (2022). Classification of breast cancer histology images using MSMV-PFENet. Scientific Reports, 12(1), 17447. doi:10.1038/s41598-022-22358-y.

Yan, F., Huang, H., Pedrycz, W., & Hirota, K. (2023). Automated breast cancer detection in mammography using ensemble classifier and feature weighting algorithms. Expert Systems with Applications, 227. doi:10.1016/j.eswa.2023.120282.

Reshan, M. S. Al, Amin, S., Zeb, M. A., Sulaiman, A., Alshahrani, H., Azar, A. T., & Shaikh, A. (2023). Enhancing Breast Cancer Detection and Classification Using Advanced Multi-Model Features and Ensemble Machine Learning Techniques. Life, 13(10), 2093. doi:10.3390/life13102093.

Huang, J., Mei, L., Long, M., Liu, Y., Sun, W., Li, X., Shen, H., Zhou, F., Ruan, X., Wang, D., Wang, S., Hu, T., & Lei, C. (2022). BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images. Bioengineering, 9(6), 261. doi:10.3390/bioengineering9060261.

Samee, N. A., Alhussan, A. A., Ghoneim, V. F., Atteia, G., Alkanhel, R., Al-Antari, M. A., & Kadah, Y. M. (2022). A Hybrid Deep Transfer Learning of CNN-Based LR-PCA for Breast Lesion Diagnosis via Medical Breast Mammograms. Sensors, 22(13), 4938. doi:10.3390/s22134938.

Law, D., Najm, A. A., Chong, J. X., K’ng, J. Z. Y., Amran, M., Ching, H. L., Wong, R. R., Leong, M. H., Mahdi, I. M., & Fazry, S. (2023). In silico identification and in vitro assessment of a potential anti-breast cancer activity of antimicrobial peptide retrieved from the ATMP1 Anabas testudineus fish peptide. PeerJ, 11, 15651. doi:10.7717/peerj.15651.

Chaudhury, S., & Sau, K. (2023). Classification of Breast Masses Using Ultrasound Images by Approaching GAN, Transfer Learning, and Deep Learning Techniques. Journal of Artificial Intelligence and Technology, 3(4), 142–153. doi:10.37965/jait.2023.0175.

Pavithra, S., Vanithamani, R., & Justin, J. (2020). Computer aided breast cancer detection using ultrasound images. Materials Today: Proceedings, 33, 4802–4807. doi:10.1016/j.matpr.2020.08.381.

Hijab, A., Rushdi, M. A., Gomaa, M. M., & Eldeib, A. (2019). Breast Cancer Classification in Ultrasound Images using Transfer Learning. International Conference on Advances in Biomedical Engineering, ICABME, 2019-October, 1–4. doi:10.1109/ICABME47164.2019.8940291.

Uysal, F., & Köse, M. M. (2022). Classification of Breast Cancer Ultrasound Images with Deep Learning-Based Models †. Engineering Proceedings, 31(1), 8. doi:10.3390/ASEC2022-13791.

Arooj, S., Atta-ur-Rahman, Zubair, M., Khan, M. F., Alissa, K., Khan, M. A., & Mosavi, A. (2022). Breast Cancer Detection and Classification Empowered With Transfer Learning. Frontiers in Public Health, 10. doi:10.3389/fpubh.2022.924432.

Zhuang, Z., Kang, Y., Joseph Raj, A. N., Yuan, Y., Ding, W., & Qiu, S. (2020). Breast ultrasound lesion classification based on image decomposition and transfer learning. Medical Physics, 47(12), 6257–6269. doi:10.1002/mp.14510.

Zeimarani, B., Costa, M. G. F., Nurani, N. Z., Bianco, S. R., De Albuquerque Pereira, W. C., & Filho, C. F. F. C. (2020). Breast Lesion Classification in Ultrasound Images Using Deep Convolutional Neural Network. IEEE Access, 8, 133349–133359. doi:10.1109/ACCESS.2020.3010863.

Hajipour Khire Masjidi, B., Bahmani, S., Sharifi, F., Peivandi, M., Khosravani, M., & Hussein Mohammed, A. (2022). CT-ML: Diagnosis of Breast Cancer Based on Ultrasound Images and Time-Dependent Feature Extraction Methods Using Contourlet Transformation and Machine Learning. Computational Intelligence and Neuroscience, 2022, 1–15. doi:10.1155/2022/1493847.

Raza, A., Ullah, N., Khan, J. A., Assam, M., Guzzo, A., & Aljuaid, H. (2023). DeepBreastCancerNet: A Novel Deep Learning Model for Breast Cancer Detection Using Ultrasound Images. Applied Sciences (Switzerland), 13(4). doi:10.3390/app13042082.

Dan, Q., Zheng, T., Liu, L., Sun, D., & Chen, Y. (2023). Ultrasound for Breast Cancer Screening in Resource-Limited Settings: Current Practice and Future Directions. Cancers, 15(7), 2112. doi:10.3390/cancers15072112.

Ashurov, A., Chelloug, S. A., Tselykh, A., Muthanna, M. S. A., Muthanna, A., & Al-Gaashani, M. S. A. M. (2023). Improved Breast Cancer Classification through Combining Transfer Learning and Attention Mechanism. Life, 13(9), 1945. doi:10.3390/life13091945.

Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. doi:10.1016/j.dib.2019.104863.

Adjobo, E. C., Mahama, A. T. S., Gouton, P., & Tossa, J. (2022). Towards Accurate Skin Lesion Classification across All Skin Categories Using a PCNN Fusion‐Based Data Augmentation Approach. Computers, 11(3), 44–44. doi:10.3390/computers11030044.

Saponara, S., & Elhanashi, A. (2022). Impact of Image Resizing on Deep Learning Detectors for Training Time and Model Performance. Lecture Notes in Electrical Engineering, 866 LNEE, 10–17. doi:10.1007/978-3-030-95498-7_2.

Cheng, P. M., & Malhi, H. S. (2017). Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images. Journal of Digital Imaging, 30(2), 234–243. doi:10.1007/s10278-016-9929-2.

Yu, Y., Lin, H., Meng, J., Wei, X., Guo, H., & Zhao, Z. (2017). Deep transfer learning for modality classification of medical images. Information (Switzerland), 8(3), 91. doi:10.3390/info8030091.

Manna, A., Kundu, R., Kaplun, D., Sinitca, A., & Sarkar, R. (2021). A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Scientific Reports, 11(1). doi:10.1038/s41598-021-93783-8.

Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzebski, S., Fevry, T., Katsnelson, J., Kim, E., Wolfson, S., Parikh, U., Gaddam, S., Lin, L. L. Y., Ho, K., Weinstein, J. D., Reig, B., Gao, Y., Toth, H., … Geras, K. J. (2020). Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Transactions on Medical Imaging, 39(4), 1184–1194. doi:10.1109/TMI.2019.2945514.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-06-014

Refbacks

  • There are currently no refbacks.