Design of Modified UWB Microstrip Antenna for UHF Partial Discharge Sensor

Umar Khayam, Yuda M. Hamdani, . Rachmawati

Abstract


The development of printable ultrahigh-frequency (UHF) antennas as partial discharge (PD) sensors for high-voltage equipment has been extensively studied. However, achieving ultrawideband (UWB) UHF PD sensors frequently requires larger sizes, unsuitable for certain applications requiring compact sensors for dielectric windows in HV equipment. This research objective is to obtain PD sensors with a wider bandwidth (0.3–3 GHz) and a compact size fitting a less-than-100mm-length gas-insulated switchgear (GIS) dielectric window. A circular patch microstrip antenna (CPMA) was chosen for its small size and potential for UWB performance. This paper discusses the design modification of the CPMA to obtain a wider bandwidth for PD detection in GIS. Simulations and lab-scale experimental verifications were conducted to evaluate the optimized sensor. The modified sensor, with a size of 60 × 73 mm², achieved a bandwidth of 3.08–3.14 GHz, a reflection coefficient of -44 dB, and several resonant frequencies of 0.3–2.3 GHz. This is a seven-time wider bandwidth compared to earlier bowtie antennas while keeping a dimension of less than 100 mm². These properties allow for efficient PD detection in GIS and other insulating media. Experimental results indicate the sensor's capacity to reliably detect and analyze PD signals while responding appropriately to variations in voltage.

 

Doi: 10.28991/ESJ-2024-08-05-03

Full Text: PDF


Keywords


Partial Discharge; UHF Sensor; Gas Insulated Switchgear; Circular Patch Microstrip Antenna.

References


Stone, G. C., Culbert, I., Boulter, E. A., & Dhirani, H. (2014). Electrical Insulation for Rotating Machines, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118886663.

Genutis, D. A. (2006). Electrical Equipment Condition Assessment Using On-Line Solid Insulation Sampling. Neta World, United States, 1-5.

Suwarno. (2016). Partial discharge in high voltage insulating materials. International Journal on Electrical Engineering and Informatics, 8(1), 147–163. doi:10.15676/ijeei.2016.8.1.11.

Han, X., Li, J., Zhang, L., Pang, P., & Shen, S. (2019). A Novel PD Detection Technique for Use in GIS Based on a Combination of UHF and Optical Sensors. IEEE Transactions on Instrumentation and Measurement, 68(8), 2890–2897. doi:10.1109/TIM.2018.2867892.

Sinurat, M. S., & Khayam, U. (2019). Characteristic of PD Phase Patterns, PD Pulse Sequence Patterns and PD Frequency Spectrum in Air Insulation Measured by RC Detector. In 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), 1-6. doi:10.1109/ICHVEPS47643.2019.9011091.

Rodrigo-Morz, A., Muñoz, F. A., & Castro-Heredia, L. C. (2019). A novel antenna for partial discharge measurements in GIS based on magnetic field detection. Sensors (Switzerland), 19(4), 1–17. doi:10.3390/s19040858.

Rozi, F., & Khayam, U. (2015). Development of loop antennas for partial discharge detection. International Journal on Electrical Engineering and Informatics, 7(1), 29. doi:10.15676/ijeei.2015.7.1.3.

Judd, M. D., Farish, O., Pearson, J. S., & Hampton, B. F. (2001). Dielectric windows for UHF partial discharge detection. IEEE Transactions on Dielectrics and Electrical Insulation, 8(6), 953–958. doi:10.1109/94.971451.

Gharehpetian, G. B., Karami, H., & Ahmadi, S.-A. (2023). Syntactic aperture radar imaging. Power Transformer Online Monitoring Using Electromagnetic Waves, 179–246, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-822801-2.00003-3.

Mahmoodi, M., Abadi, S. M. N. R., Karami, H., Hejazi, M. A., & Gharehpetian, G. B. (2020). Design and implementation of dielectric windows for detection of radial deformation of HV transformer winding using radar imaging. IET Science, Measurement & Technology, 14(4), 478–485. doi:10.1049/iet-smt.2018.5485.

Li, J., Jiang, T., Cheng, C., & Wang, C. (2013). Hilbert fractal antenna for UHF detection of partial discharges in transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 20(6), 2017–2025. doi:10.1109/TDEI.2013.6678849.

Do Nascimento Cruz, J., Serres, A. J. R., De Oliveira, A. C., Xavier, G. V. R., De Albuquerque, C. C. R., Da Costa, E. G., & Freire, R. C. S. (2019). Bio-inspired printed monopole antenna applied to partial discharge detection. Sensors (Switzerland), 19(3), 1–15. doi:10.3390/s19030628.

Azam, S. M. K., Othman, M., Illias, H. A., Abdul Latef, T., Tariqul Islam, M., & Fadzil Ain, M. (2023). Ultra-high frequency printable antennas for partial discharge diagnostics in high voltage equipment. Alexandria Engineering Journal, 64, 709–729. doi:10.1016/j.aej.2022.11.026.

Lozano-Claros, D., Custovic, E., & Elton, D. (2016). Two planar antennas for detection of partial discharge in gas-insulated switchgear (GIS). 4th IEEE Conference on Communication, Networks and Satellite, COMNESTAT 2015 - Proceedings, 8–15. doi:10.1109/COMNETSAT.2015.7434301.

Azam, S. M. K., Othman, M., Illias, H. A., Latef, T. A., Mahadi, W. N. L. W., Fahmi, D., Hossain, A. K. M. Z., & Ain, M. F. (2023). Planar Sensor for Noise Cancellation during Partial Discharge Detection in Open Substation. IEEE Sensors Journal, 23(14), 15552–15562. doi:10.1109/JSEN.2023.3279861.

Yadam, Y. R., Ramanujam, S., & Arunachalam, K. (2023). Study of Polarization Sensitivity of UHF Sensor for Partial Discharge Detection in Gas Insulated Switchgear. IEEE Sensors Journal, 23(2), 1214–1223. doi:10.1109/JSEN.2022.3224475.

Dhara, S., Koley, C., & Chakravorti, S. (2024). An Ultrawideband Partial Discharge Sensor for High-Voltage Power Transformers. IEEE Sensors Journal, 24(10), 16261–16269. doi:10.1109/JSEN.2024.3383064.

Shu, Z., Wang, W., Yang, C., Guo, Y., Ji, J., Yang, Y., Shi, T., Zhao, Z., & Zheng, Y. (2023). External Partial Discharge Detection of Gas-Insulated Switchgears Using a Low-Noise and Enhanced-Sensitivity UHF Sensor Module. IEEE Transactions on Instrumentation and Measurement, 72, 3518210. doi:10.1109/TIM.2023.3277980.

Pramudita, A., Kurniawan, A., & Suksmono, A. B. (2007, June). Modified dipole antenna for UWB SFCW-GPR. In Proceedings of the Intenational Conference on Electrical Engineering and Informatics (ICEEI’07), 17-19 June, 2007, Bandung, Indonesia.

Simorangkir, R. B. V. B., & Munir, A. (2011). Numerical design of ultra-wideband printed antenna for surface penetrating radar application. Telkomnika, 9(2), 341–350. doi:10.12928/telkomnika.v9i2.706.

Simorangkir, R. B. V. B. (2010). Compact 50-5000 MHz UWB microstrip antenna for SFCW GPR application. Master Thesis, Institut Teknologi Bandung, Bandung, Indonesia. (In Indonesian).

Hikita, M., Yamashita, H., Kato, T., Hayakawa, N., Ueda, T., & Okubo, H. (1994). Electromagnetic spectrum caused by partial discharge in air under ac and dc voltage application. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2, 570–573. doi:10.1109/icpadm.1994.414074.

Ra, N., & Khayam, U. (2015). Partial discharge measurement of 4 types of electrodes configuration in air insulation using high frequency current transformer sensor. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering, 100-105. doi:10.1109/ICEVTIMECE.2015.7496667.

Yulistya Negara, I. M., Fahmi, D., Asfani, D. A., Satriyadi Hernanda, I. G. N., Soebagio, J. C., & Yulistika Siahaan, V. (2020). Characteristics of Partial Discharge Inception Voltage Patterns Using Antenna in Air Insulation. ICITEE 2020 - Proceedings of the 12th International Conference on Information Technology and Electrical Engineering, 263–268. doi:10.1109/ICITEE49829.2020.9271773.

Khayam, U., & Suryandi, A. A. (2023). Design of Bowtie Antenna with Rounded Edge and Middle-Sliced Modifications for UHF Partial Discharge Sensor. IEEE Access, 11, 22822-22834. doi:10.1109/ACCESS.2023.3252006.

Uwiringiyimana, J. P., Khayam, U., & Montanari, G. C. (2022). Design and implementation of ultra-wide band antenna for partial discharge detection in high voltage power equipment. IEEE Access, 10, 10983-10994. doi:10.1109/ACCESS.2022.3144416.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-05-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Umar Khayam, Yuda Muhammad Hamdani, Rachmawati Rachmawati