Cannibalism and Harvesting in Tritrophic Chains: Insights from Mathematical and Artificial Neural Network Analysis

Muhammad Shoaib Arif, Aiman Mukheimer, Asad Ejaz

Abstract


In this study, we introduce a novel tri-trophic food chain model that integrates cannibalism among basal prey and harvesting behaviors in the top predator, aiming to understand ecosystem dynamics comprehensively. Objectives encompass assessing system boundedness, computing fixed points, and determining stability characteristics using mathematical frameworks. The Routh-Hurwitz criteria and Lyapunov function are employed for local and global stability analyses of coexistence equilibrium points. Graphical interpretations elucidate relationships among pivotal parameters: prey growth rate, cannibalism intensity, and predator predation rate. Phase portraits and time series solutions illustrate parameter impacts. To enhance analytical depth and predictive capabilities, we utilize artificial neural networks (ANNs). Methods include connecting ANNs to computational proficiency for insights into the model's behavior over time. Findings demonstrate system boundedness, computed fixed points, and stability characteristics. Graphical interpretations reveal parameter impacts on system dynamics. ANNs offer predictive insights into model behavior. This study's novelty lies in integrating cannibalism and harvesting behaviors into a tri-trophic food chain model, employing mathematical analyses and ANNs to understand ecosystem dynamics comprehensively. Improvements include predictive capabilities and deeper analytical insights.

 

Doi: 10.28991/ESJ-2024-08-04-02

Full Text: PDF


Keywords


Food Chain; Cannibalism; Routh Hurwitz Criterion; Lyapunov Function; Global Stability; Artificial Neural Network.

References


Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins, Philadelphia, United States.

Holling, C. S. (1966). The Functional Response of Invertebrate Predators to Prey Density. Memoirs of the Entomological Society of Canada, 98(S48), 5–86. doi:10.4039/entm9848fv.

Biazar, J., & Montazeri, R. (2005). A computational method for solution of the prey and predator problem. Applied Mathematics and Computation, 163(2), 841–847. doi:10.1016/j.amc.2004.05.001.

Solis, F. J. (2008). Self-limitation in a discrete predator-prey model. Mathematical and Computer Modelling, 48(1–2), 191–196. doi:10.1016/j.mcm.2007.09.006.

Danca, M., Codreanu, S., & Bakó, B. (1997). Journal of Biological Physics, 23(1), 11–20. doi:10.1023/a:1004918920121.

Jing, Z., & Yang, J. (2006). Bifurcation and chaos in discrete-time predator–prey system. Chaos, Solitons & Fractals, 27(1), 259–277. doi:10.1016/j.chaos.2005.03.040.

Liu, X., & Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator–prey system. Chaos, Solitons & Fractals, 32(1), 80–94. doi:10.1016/j.chaos.2005.10.081.

Elsadany, A. E. A., El-Metwally, H. A., Elabbasy, E. M., & Agiza, H. N. (2012). Chaos and bifurcation of a nonlinear discrete prey-predator system. Computational Ecology and Software, 2(3), 169.

Summers, D., Cranford, J. G., & Healey, B. P. (2000). Chaos in periodically forced discrete-time ecosystem models. Chaos, Solitons and Fractals, 11(14), 2331–2342. doi:10.1016/S0960-0779(99)00154-X.

Paul, S., Mondal, S. P., & Bhattacharya, P. (2016). Numerical solution of Lotka Volterra prey predator model by using Runge-Kutta-Fehlberg method and Laplace Adomian decomposition method. Alexandria Engineering Journal, 55(1), 613–617. doi:10.1016/j.aej.2015.12.026.

Batiha, B. (2014). The solution of the prey and predator problem by differential transformation method. International Journal of Basic and Applied Sciences, 4(1), 36. doi:10.14419/ijbas.v4i1.4034.

Garvie, M. R., Burkardt, J., & Morgan, J. (2015). Simple Finite Element Methods for Approximating Predator–Prey Dynamics in Two Dimensions Using Matlab. Bulletin of Mathematical Biology, 77(3), 548–578. doi:10.1007/s11538-015-0062-z.

Bildik, N., & Deniz, S. (2016). The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems. Mathematical Sciences Letters, 5(3), 285–289. doi:10.18576/msl/050310.

Yu, J. S., & Yu, J. J. (2014). Homotopy analysis method for a prey-predator system with holling IV functional response. Applied Mechanics and Materials, 687–691, 1286–1291. doi:10.4028/www.scientific.net/AMM.687-691.1286.

Saha Ray, S. (2015). A new coupled fractional reduced differential transform method for the numerical solution of fractional predator-prey system. CMES - Computer Modeling in Engineering and Sciences, 105(3), 231–249.

Naji R.K. (2012). Global stability and persistence of three species food web involving omnivory. Iraqi Journal of Sciences, 53(4), 866–876.

Nath, B., & Das, K. P. (2018). Density Dependent Mortality of Intermediate Predator Controls Chaos-Conclusion Drawn from A Tri-Trophic Food Chain. J. Ksiam, 22(3), 179–199. doi:10.12941/jksiam.2018.22.179.

Khan, A., Abdeljawad, T., Gómez-Aguilar, J. F., & Khan, H. (2020). Dynamical study of fractional order mutualism parasitism food web module. Chaos, Solitons & Fractals, 134, 109685. doi:10.1016/j.chaos.2020.109685.

Kondoh, M., Kato, S., & Sakato, Y. (2010). Food webs are built up with nested subwebs. Ecology, 91(11), 3123–3130. doi:10.1890/09-2219.1.

Holt, R. D., Grover, J., & Tilman, D. (1994). Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist, 144(5), 741–771. doi:10.1086/285705.

Huang, C., Qiao, Y., Huang, L., & Agarwal, R. P. (2018). Dynamical behaviors of a food-chain model with stage structure and time delays. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1589-8.

Thirthar, A. A., Majeed, S. J., Alqudah, M. A., Panja, P., & Abdeljawad, T. (2022). Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator. Chaos, Solitons & Fractals, 159, 112091. doi:10.1016/j.chaos.2022.112091.

Persson, L., De Roos, A. M., Claessen, D., Byström, P., Lövgren, J., Sjögren, S., Svanbäck, R., Wahlström, E., & Westman, E. (2003). Gigantic cannibals driving a whole-lake trophic cascade. Proceedings of the National Academy of Sciences, 100(7), 4035–4039. doi:10.1073/pnas.0636404100.

Van den Bosch, F., & Gabriel, W. (1997). Cannibalism in an age-structured predator-prey system. Bulletin of Mathematical Biology, 59(3), 551–567. doi:10.1007/bf02459465.

Jurado-Molina, J., Gatica, C., & Cubillos, L. A. (2006). Incorporating cannibalism into an age-structured model for the Chilean hake. Fisheries Research, 82(1–3), 30–40. doi:10.1016/j.fishres.2006.08.018.

Kundu, S., Alzabut, J., E.Samei, M., & Khan, H. (2023). Habitat complexity of a discrete predator-prey model with Hassell-Varley type functional response. Community and Ecology, 1(1), 105. doi:10.59429/ce.v1i1.105.

Ejaz, A., Nawaz, Y., Arif, M. S., Mashat, D. S., & Abodayeh, K. (2022). Stability Analysis of Predator-Prey System with Consuming Resource and Disease in Predator Species. CMES - Computer Modeling in Engineering & Sciences, 131(1), 489-506. doi:10.32604/cmes.2022.019440.

Arif, M. S., Abodayeh, K., & Ejaz, A. (2023). On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species. Mathematical Biosciences and Engineering, 20(3), 5066-5093.

Arif, M. S., Abodayeh, K., & Ejaz, A. (2023). Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource. Axioms, 12(1), 64. doi:10.3390/axioms12010064.

Mall, S., & Chakraverty, S. (2014). Chebyshev Neural Network based model for solving Lane-Emden type equations. Applied Mathematics and Computation, 247, 100–114. doi:10.1016/j.amc.2014.08.085.

Chakraverty, S., & Mall, S. (2014). Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Computing and Applications, 25(3–4), 585–594. doi:10.1007/s00521-013-1526-4.

Kumar, G. R., Ramesh, K., Khan, A., Lakshminarayan, K., & Abdeljawad, T. (2024). Bazykin’s Predator–Prey Model Includes a Dynamical Analysis of a Caputo Fractional Order Delay Fear and the Effect of the Population-Based Mortality Rate on the Growth of Predators. Qualitative Theory of Dynamical Systems, 23(3), 130. doi:10.1007/s12346-024-00981-6.

Mollah, H., & Sarwardi, S. (2024). Mathematical modeling and bifurcation analysis of a delayed eco-epidemiological model with disease in predator and linear harvesting. International Journal of Modelling and Simulation, 1–21. doi:10.1080/02286203.2023.2296197.

Khader, M. M., Macías-Díaz, J. E., Román-Loera, A., & Saad, K. M. (2024). A Note on a Fractional Extension of the Lotka–Volterra Model Using the Rabotnov Exponential Kernel. Axioms, 13(1), 71. doi:10.3390/axioms13010071.

Xing, Y., & Jiang, W. (2024). Turing-Hopf bifurcation and bi-stable spatiotemporal periodic orbits in a delayed predator-prey model with predator-taxis. Journal of Mathematical Analysis and Applications, 533(1), 127994. doi:10.1016/j.jmaa.2023.127994.

Kumari, N., & Kumar, V. (2022). Controlling chaos and pattern formation study in a tritrophic food chain model with cannibalistic intermediate predator. European Physical Journal Plus, 137(3). doi:10.1140/epjp/s13360-022-02539-4.

Kar, T. K., Ghorai, A., & Batabyal, A. (2012). Global dynamics and bifurcation of a tri-trophic food chain model. World Journal of Modelling and Simulation, 8(1), 66-80.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-04-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Shoaib Arif, Aiman Mukheimer1, Asad Ejaz