Cannibalism and Harvesting in Tritrophic Chains: Insights from Mathematical and Artificial Neural Network Analysis
Abstract
Doi: 10.28991/ESJ-2024-08-04-02
Full Text: PDF
Keywords
References
Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins, Philadelphia, United States.
Holling, C. S. (1966). The Functional Response of Invertebrate Predators to Prey Density. Memoirs of the Entomological Society of Canada, 98(S48), 5–86. doi:10.4039/entm9848fv.
Biazar, J., & Montazeri, R. (2005). A computational method for solution of the prey and predator problem. Applied Mathematics and Computation, 163(2), 841–847. doi:10.1016/j.amc.2004.05.001.
Solis, F. J. (2008). Self-limitation in a discrete predator-prey model. Mathematical and Computer Modelling, 48(1–2), 191–196. doi:10.1016/j.mcm.2007.09.006.
Danca, M., Codreanu, S., & Bakó, B. (1997). Journal of Biological Physics, 23(1), 11–20. doi:10.1023/a:1004918920121.
Jing, Z., & Yang, J. (2006). Bifurcation and chaos in discrete-time predator–prey system. Chaos, Solitons & Fractals, 27(1), 259–277. doi:10.1016/j.chaos.2005.03.040.
Liu, X., & Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator–prey system. Chaos, Solitons & Fractals, 32(1), 80–94. doi:10.1016/j.chaos.2005.10.081.
Elsadany, A. E. A., El-Metwally, H. A., Elabbasy, E. M., & Agiza, H. N. (2012). Chaos and bifurcation of a nonlinear discrete prey-predator system. Computational Ecology and Software, 2(3), 169.
Summers, D., Cranford, J. G., & Healey, B. P. (2000). Chaos in periodically forced discrete-time ecosystem models. Chaos, Solitons and Fractals, 11(14), 2331–2342. doi:10.1016/S0960-0779(99)00154-X.
Paul, S., Mondal, S. P., & Bhattacharya, P. (2016). Numerical solution of Lotka Volterra prey predator model by using Runge-Kutta-Fehlberg method and Laplace Adomian decomposition method. Alexandria Engineering Journal, 55(1), 613–617. doi:10.1016/j.aej.2015.12.026.
Batiha, B. (2014). The solution of the prey and predator problem by differential transformation method. International Journal of Basic and Applied Sciences, 4(1), 36. doi:10.14419/ijbas.v4i1.4034.
Garvie, M. R., Burkardt, J., & Morgan, J. (2015). Simple Finite Element Methods for Approximating Predator–Prey Dynamics in Two Dimensions Using Matlab. Bulletin of Mathematical Biology, 77(3), 548–578. doi:10.1007/s11538-015-0062-z.
Bildik, N., & Deniz, S. (2016). The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems. Mathematical Sciences Letters, 5(3), 285–289. doi:10.18576/msl/050310.
Yu, J. S., & Yu, J. J. (2014). Homotopy analysis method for a prey-predator system with holling IV functional response. Applied Mechanics and Materials, 687–691, 1286–1291. doi:10.4028/www.scientific.net/AMM.687-691.1286.
Saha Ray, S. (2015). A new coupled fractional reduced differential transform method for the numerical solution of fractional predator-prey system. CMES - Computer Modeling in Engineering and Sciences, 105(3), 231–249.
Naji R.K. (2012). Global stability and persistence of three species food web involving omnivory. Iraqi Journal of Sciences, 53(4), 866–876.
Nath, B., & Das, K. P. (2018). Density Dependent Mortality of Intermediate Predator Controls Chaos-Conclusion Drawn from A Tri-Trophic Food Chain. J. Ksiam, 22(3), 179–199. doi:10.12941/jksiam.2018.22.179.
Khan, A., Abdeljawad, T., Gómez-Aguilar, J. F., & Khan, H. (2020). Dynamical study of fractional order mutualism parasitism food web module. Chaos, Solitons & Fractals, 134, 109685. doi:10.1016/j.chaos.2020.109685.
Kondoh, M., Kato, S., & Sakato, Y. (2010). Food webs are built up with nested subwebs. Ecology, 91(11), 3123–3130. doi:10.1890/09-2219.1.
Holt, R. D., Grover, J., & Tilman, D. (1994). Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist, 144(5), 741–771. doi:10.1086/285705.
Huang, C., Qiao, Y., Huang, L., & Agarwal, R. P. (2018). Dynamical behaviors of a food-chain model with stage structure and time delays. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1589-8.
Thirthar, A. A., Majeed, S. J., Alqudah, M. A., Panja, P., & Abdeljawad, T. (2022). Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator. Chaos, Solitons & Fractals, 159, 112091. doi:10.1016/j.chaos.2022.112091.
Persson, L., De Roos, A. M., Claessen, D., Byström, P., Lövgren, J., Sjögren, S., Svanbäck, R., Wahlström, E., & Westman, E. (2003). Gigantic cannibals driving a whole-lake trophic cascade. Proceedings of the National Academy of Sciences, 100(7), 4035–4039. doi:10.1073/pnas.0636404100.
Van den Bosch, F., & Gabriel, W. (1997). Cannibalism in an age-structured predator-prey system. Bulletin of Mathematical Biology, 59(3), 551–567. doi:10.1007/bf02459465.
Jurado-Molina, J., Gatica, C., & Cubillos, L. A. (2006). Incorporating cannibalism into an age-structured model for the Chilean hake. Fisheries Research, 82(1–3), 30–40. doi:10.1016/j.fishres.2006.08.018.
Kundu, S., Alzabut, J., E.Samei, M., & Khan, H. (2023). Habitat complexity of a discrete predator-prey model with Hassell-Varley type functional response. Community and Ecology, 1(1), 105. doi:10.59429/ce.v1i1.105.
Ejaz, A., Nawaz, Y., Arif, M. S., Mashat, D. S., & Abodayeh, K. (2022). Stability Analysis of Predator-Prey System with Consuming Resource and Disease in Predator Species. CMES - Computer Modeling in Engineering & Sciences, 131(1), 489-506. doi:10.32604/cmes.2022.019440.
Arif, M. S., Abodayeh, K., & Ejaz, A. (2023). On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species. Mathematical Biosciences and Engineering, 20(3), 5066-5093.
Arif, M. S., Abodayeh, K., & Ejaz, A. (2023). Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource. Axioms, 12(1), 64. doi:10.3390/axioms12010064.
Mall, S., & Chakraverty, S. (2014). Chebyshev Neural Network based model for solving Lane-Emden type equations. Applied Mathematics and Computation, 247, 100–114. doi:10.1016/j.amc.2014.08.085.
Chakraverty, S., & Mall, S. (2014). Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Computing and Applications, 25(3–4), 585–594. doi:10.1007/s00521-013-1526-4.
Kumar, G. R., Ramesh, K., Khan, A., Lakshminarayan, K., & Abdeljawad, T. (2024). Bazykin’s Predator–Prey Model Includes a Dynamical Analysis of a Caputo Fractional Order Delay Fear and the Effect of the Population-Based Mortality Rate on the Growth of Predators. Qualitative Theory of Dynamical Systems, 23(3), 130. doi:10.1007/s12346-024-00981-6.
Mollah, H., & Sarwardi, S. (2024). Mathematical modeling and bifurcation analysis of a delayed eco-epidemiological model with disease in predator and linear harvesting. International Journal of Modelling and Simulation, 1–21. doi:10.1080/02286203.2023.2296197.
Khader, M. M., Macías-Díaz, J. E., Román-Loera, A., & Saad, K. M. (2024). A Note on a Fractional Extension of the Lotka–Volterra Model Using the Rabotnov Exponential Kernel. Axioms, 13(1), 71. doi:10.3390/axioms13010071.
Xing, Y., & Jiang, W. (2024). Turing-Hopf bifurcation and bi-stable spatiotemporal periodic orbits in a delayed predator-prey model with predator-taxis. Journal of Mathematical Analysis and Applications, 533(1), 127994. doi:10.1016/j.jmaa.2023.127994.
Kumari, N., & Kumar, V. (2022). Controlling chaos and pattern formation study in a tritrophic food chain model with cannibalistic intermediate predator. European Physical Journal Plus, 137(3). doi:10.1140/epjp/s13360-022-02539-4.
Kar, T. K., Ghorai, A., & Batabyal, A. (2012). Global dynamics and bifurcation of a tri-trophic food chain model. World Journal of Modelling and Simulation, 8(1), 66-80.
DOI: 10.28991/ESJ-2024-08-04-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Shoaib Arif, Aiman Mukheimer1, Asad Ejaz