Tribological Performance of Polymer Composite Modified with Calcined Eggshell Particles Post High-Temperature Exposure

Sunardi Sunardi, Dody Ariawan, Eko Surojo, Aditya Rio Prabowo, Tohid Ghanbari-Ghazijahani, Cahyo Hadi Wibowo, Hammar Ilham Akbar

Abstract


During operation, brake lining material rubs against the disc to generate heat. This heat could decrease the brake lining performance, such as the friction coefficient, specific wear rate, and interface temperature of the rubbing surfaces. The resulting wear debris is environmentally harmful and poses risks to human health. Therefore, this study aimed to replace the harmful material using eggshell particles as a filler in brake lining composite and enhance tribological properties. The brake lining samples were manufactured through three stages: cold compaction, hot compaction, and post-curing. The next step is the samples were subjected to a one-hour high-temperature exposure at 200°C, 300°C, 400°C, and 500°C. The results showed that the high-temperature exposure significantly affected the specific wear rate, friction coefficient, and interface temperature between the brake lining and disc. An interesting finding was that adding calcined eggshell particles in composite could improve the tribological properties up to 400°C. However, the best material’s performance resulted when the samples got an exposure temperature of 200°C.

 

Doi: 10.28991/ESJ-2024-08-04-03

Full Text: PDF


Keywords


Friction Material; Calcined Eggshell; High-Heat Exposure; Tribological Properties.

References


Kisuka, F., Wu, C.-Y., & Hare, C. (2021). Friction-induced heat generation between two particles. EPJ Web of Conferences, 249, 05007. doi:10.1051/epjconf/202124905007.

Karuppiah, G., Kuttalam, K. C., Ayrilmis, N., Nagarajan, R., Devi, M. P. I., Palanisamy, S., & Santulli, C. (2022). Tribological Analysis of Jute/Coir Polyester Composites Filled with Eggshell Powder (ESP) or Nanoclay (NC) Using Grey Rational Method. Fibers, 10(7), 60. doi:10.3390/fib10070060.

Baena, J. C., & Peng, Z. (2017). Mechanical and tribological performance of UHMWPE influenced by temperature change. Polymer Testing, 62, 102–109. doi:10.1016/j.polymertesting.2017.06.017.

Qin, G., Na, J., Mu, W., Tan, W., Yang, J., & Ren, J. (2018). Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints. Composites Part B: Engineering, 154, 43–55. doi:10.1016/j.compositesb.2018.07.059.

Belotti, L. P., Vadivel, H. S., & Emami, N. (2019). Tribological performance of hygrothermally aged UHMWPE hybrid composites. Tribology International, 138, 150–156. doi:10.1016/j.triboint.2019.05.034.

Tefera, G., Adali, S., & Bright, G. (2022). Mechanical behaviour of carbon fibre reinforced polymer composite material at different temperatures: Experimental and model assessment. Polymers and Polymer Composites, 30, 096739112211250. doi:10.1177/09673911221125072.

Bajracharya, R. M., Manalo, A. C., Karunasena, W., & Lau, K. T. (2014). Effect of elevated temperature on the tensile properties of recycled mixed plastic waste. Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23). 9-12 December 2014, Byron Bay, Australia.

Li, X., Mou, Q., Ji, S., Li, X., Chen, Z., & Yuan, G. (2022). Effect of elevated temperature on physical and mechanical properties of engineered bamboo composites. Industrial Crops and Products, 189, 115847. doi:10.1016/j.indcrop.2022.115847.

Bellini, C., Di Cocco, V., Iacoviello, D., & Iacoviello, F. (2023). Temperature Influence on Brake Pad Friction Coefficient Modelisation. Materials, 17(1), 189. doi:10.3390/ma17010189.

Gehlen, G. S., Nogueira, A. P. G., Carlevaris, D., Barros, L. Y., Poletto, J. C., Lasch, G., Straffelini, G., Ferreira, N. F., & Neis, P. D. (2023). Tribological assessment of rice husk ash in eco-friendly brake friction materials. Wear, 516–517, 204613. doi:10.1016/j.wear.2022.204613.

Yavuz, H., Bayrakçeken, H., Çengelci, E., & Arslan, T. A. (2024). An investigation on the performance of vehicle brake pads developed from Cortaderia selloana based biomass. Biomass Conversion and Biorefinery, 1-10. doi:10.1007/s13399-023-05262-x.

Matějka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., Yun, R., Vaculík, M., Heliová, M., & Lu, Y. (2013). Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 51, 847–853. doi:10.1016/j.matdes.2013.04.079.

Singh, T., Pruncu, C. I., Gangil, B., Singh, V., & Fekete, G. (2020). Comparative performance assessment of pineapple and Kevlar fibers based friction composites. Journal of Materials Research and Technology, 9(2), 1491–1499. doi:10.1016/j.jmrt.2019.11.074.

Wu, S., Zhao, J., Guo, M., Zhuang, J., & Wu, Q. (2021). Effect of Fiber Shape on the Tribological, Mechanical, and Morphological Behaviors of Sisal Fiber-Reinforced Resin-Based Friction Materials: Helical, Undulated, and Straight Shapes. Materials, 14(18), 5410. doi:10.3390/ma14185410.

Jean-Fulcrand, A., Masen, M. A., Bremner, T., & Wong, J. S. S. (2019). Effect of temperature on tribological performance of polyetheretherketone-polybenzimidazole blend. Tribology International, 129(30), 5–15. doi:10.1016/j.triboint.2018.08.001.

Wang, X., Qin, Y., & Zhao, C. (2022). High-temperature behavior of silicone rubber composite with boron oxide/calcium silicate. E-Polymers, 22(1), 595–606. doi:10.1515/epoly-2022-0051.

Zhen, J., Han, Y., Wang, H., Jiang, Z., Wang, L., Huang, Y., Jia, Z., & Zhang, R. (2023). High Temperature Friction and Wear Behavior of PTFE/MoS2 Composites. Lubricants, 11(8), 312. doi:10.3390/lubricants11080312.

Dwiwedi, S. K., Srivastava, A. K., & Chopkar, M. K. (2019). Wear Study of Chicken Eggshell-Reinforced Al6061 Matrix Composites. Transactions of the Indian Institute of Metals, 72(1), 73–84. doi:10.1007/s12666-018-1463-0.

Vieira, K. P., Reichert, A. A., Cholant, G. M., Marin, D., Beatrice, C. A. G., & de Oliveira, A. D. (2023). Sustainable composites of eco-friendly polyethylene reinforced with eggshells and bio-calcium carbonate. Polimeros, 33(3), e20230026. doi:10.1590/0104-1428.20220108.

Panchal, M., Raghavendra, G., Reddy, A. R., Omprakash, M., & Ojha, S. (2021). Experimental investigation of mechanical and erosion behavior of eggshell nanoparticulate epoxy biocomposite. Polymers and Polymer Composites, 29(7), 897–908. doi:10.1177/0967391120943454.

Nandiyanto, A. B. D., Ragadhita, R., Fiandini, M., Al Husaeni, D. F., Al Husaeni, D. N., & Fadhillah, F. (2022). Domestic waste (eggshells and banana peels particles) as sustainable and renewable resources for improving resin-based brakepad performance: Bibliometric literature review, techno-economic analysis, dual-sized reinforcing experiments, to comparison with commercial product. Communications in Science and Technology, 7(1), 50–61. doi:10.21924/cst.7.1.2022.757.

Sunardi, S., Ariawan, D., Surojo, E., Prabowo, A. R., Akbar, H. I., Cao, B., & Carvalho, H. (2023). Assessment of eggshell-based material as a green-composite filler: Project milestones and future potential as an engineering material. Journal of the Mechanical Behavior of Materials, 32(1), 20220269. doi:10.1515/jmbm-2022-0269.

Sunardi, S., Ariawan, D., Surojo, E., Prabowo, A. R., Akbar, H. I., Sudrajad, A., & Seputro, H. (2023). Optimization of eggshell particles to produce eco-friendly green fillers with bamboo reinforcement in organic friction materials. Reviews on Advanced Materials Science, 62(1), 20230111. doi:10.1515/rams-2023-0111.

Hassan, S. B., Aigbodion, V. S., & Patrick, S. N. (2012). Development of polyester/eggshell particulate composites. Tribology in Industry, 34(4), 217–225.

Kowshik, S., Sharma, S., Rao, S., Shettar, M., & Hiremath, P. (2023). Mechanical Properties of Post-Cured Eggshell-Filled Glass-Fibre-Reinforced Polymer Composites. Journal of Composites Science, 7(2), 49. doi:10.3390/jcs7020049.

Manalo, A. C., Wani, E., Zukarnain, N. A., Karunasena, W., & Lau, K. T. (2015). Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Composites Part B: Engineering, 80, 73–83. doi:10.1016/j.compositesb.2015.05.033.

Sugiman, S., Setyawan, P. D., & Anshari, B. (2019). Effects of alkali treatment of bamboo fibre under various conditions on the tensile and flexural properties of bamboo fibre/polystyrene-modified unsaturated polyester composites. Journal of Engineering Science and Technology, 14(1), 27–47.

Wang, Q., Zhang, Y., Liang, W., Wang, J., & Chen, Y. (2020). Effect of silane treatment on mechanical properties and thermal behavior of bamboo fibers reinforced polypropylene composites. Journal of Engineered Fibers and Fabrics, 15. doi:10.1177/1558925020958195.

Ahmadijokani, F., Shojaei, A., Arjmand, M., Alaei, Y., & Yan, N. (2019). Effect of short carbon fiber on thermal, mechanical and tribological behavior of phenolic-based brake friction materials. Composites Part B: Engineering, 168, 98–105. doi:10.1016/j.compositesb.2018.12.038.

Palmiyanto, M. H., Surojo, E., Ariawan, D., & Imaduddin, F. (2021). Waste glass powder as a sustainable abrasive material for composite brake block. Tribology in Industry, 43(3), 363–372. doi:10.24874/ti.1061.02.21.06.

B Rajan, B. S., Balaji, M. S., & Noorani, A. M. A. (2019). Tribological performance of graphene/graphite filled phenolic composites - A comparative study. Composites Communications, 15(7), 34–39. doi:10.1016/j.coco.2019.05.012.

Mohd Pu’ad, N. A. S., Alipal, J., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2021). Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Materials Today: Proceedings, 42, 172–177. doi:10.1016/j.matpr.2020.11.276.

Bobrowski, A., & Grabowska, B. (2015). Ftir Method in Studies of the Resol Type Phenol Resin Structure in the Air Atmosphere in Some Time Intervals. Metallurgy and Foundry Engineering, 41(3), 107. doi:10.7494/mafe.2015.41.3.107.

Zhou, F., Cheng, G., & Jiang, B. (2014). Effect of silane treatment on microstructure of sisal fibers. Applied Surface Science, 292, 806–812. doi:10.1016/j.apsusc.2013.12.054.

Lin, J., Yang, Z., Hu, X., Hong, G., Zhang, S., & Song, W. (2018). The effect of alkali treatment on properties of dopamine modification of bamboo fiber/polylactic acid composites. Polymers, 10(4), 403. doi:10.3390/polym10040403.

Lim, K. Y., Yasim-Anuar, T. A. T., Sharip, N. S., Ujang, F. A., Husin, H., Ariffin, H., Md Tahir, P., Li, X., Lee, S. H., & Yusof, M. T. (2023). Green Phenolic Resins from Oil Palm Empty Fruit Bunch (EFB) Phenolated Lignin and Bio-Oil as Phenol Substitutes for Bonding Plywood. Polymers, 15(5), 1258. doi:10.3390/polym15051258.

Najah, M. I., Razak, A., Nekmat, N. A. C. S., Adzila, S., & Othman, R. (2020). Characterization of Calcium Carbonate Extracted from Eggshell Waste at Various Calcination Temperature. International Journal of Emerging Trends in Engineering Research, 8(10), 6725–6731. doi:10.30534/ijeter/2020/16810202.

Seo, H., Park, J., Kim, Y. C., Lee, J. J., & Jang, H. (2021). Effect of disc materials on brake emission during moderate-temperature braking. Tribology International, 163. doi:10.1016/j.triboint.2021.107185.

Ma, J., Qi, X., Zhao, Y., Zhang, Q., & Yang, Y. (2017). Effects of elevated temperature on tribological behavior of polyimide and polyimide/mesoporous silica nanocomposite in dry sliding against GCr15 steel. Wear, 374–375, 142–151. doi:10.1016/j.wear.2017.01.099.

Meresse, D., Watremez, M., Siroux, M., Dubar, L., & Harmand, S. (2013). Friction and wear mechanisms of phenolic-based materials on high speed tribometer. Journal of Tribology, 135(3), 031601. doi:10.1115/1.4023803.

Pan, L., Han, J., Yang, Z., Wang, J., Li, X., Li, Z., & Li, W. (2017). Temperature Effects on the Friction and Wear Behaviors of SiCp/A356 Composite against Semimetallic Materials. Advances in Materials Science and Engineering, 1824080. doi:10.1155/2017/1824080.

Zhang, T., Qiao, X., Tan, F., Wang, W., Lu, H., Xiao, Z., & Chen, J. (2017). Preparation of polyimide-graphite composite and evaluation of its friction behavior at elevated temperatures. Science and Engineering of Composite Materials, 24(1), 81–86. doi:10.1515/secm-2014-0322.

Vikram, K., Bhaumik, S., & Pramanik, S. (2023). Effect of graphite on tribological and mechanical properties of PA6/5GF composites. Journal of Thermal Analysis and Calorimetry, 148(9), 3341–3355. doi:10.1007/s10973-022-11939-8.

Zhang, E., Gao, F., Fu, R., Lu, Y., Han, X., & Su, L. (2021). Tribological behavior of phenolic resin-based friction composites filled with graphite. Materials, 14(4), 742. doi:10.3390/ma14040742.

Roshchin, M. N. (2020). High-temperature tribological tests of composite materials. IOP Conference Series: Materials Science and Engineering, 862(2), 022008. doi:10.1088/1757-899X/862/2/022008.

Yang, Y., Cao, J., Wu, P., Luo, T., Liang, T., Yin, H., & Yuan, K. (2024). Effect of temperature on interface debonding behavior of graphene/graphene-oxide on cement-based composites. Surfaces and Interfaces, 47. doi:10.1016/j.surfin.2024.104198.

Dai, Z., Zhang, B., Shi, F., Li, M., Zhang, Z., & Gu, Y. (2011). Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Applied Surface Science, 257(20), 8457–8461. doi:10.1016/j.apsusc.2011.04.129.

Souza, P. S., Santos, A. J., Cotrim, M. A. P., Abrão, A. M., & Câmara, M. A. (2020). Analysis of the surface energy interactions in the tribological behavior of ALCrN and TIAlN coatings. Tribology International, 146(6), 106206. doi:10.1016/j.triboint.2020.106206.

Tang, X., Tong, J., Wang, L., Hu, W., Liu, D., Yu, C., Yuan, S., Ma, Y., & Zhuang, J. (2023). Study on the mechanism of expanded graphite to improve the fading resistance of the non-asbestos organic composite braking materials. Tribology International, 180. doi:10.1016/j.triboint.2023.108278.

Karacor, B., & Özcanli, M. (2022). Post curing temperature effect on mechanical characterization of jute/basalt fiber reinforced hybrid composites. International Advanced Researches and Engineering Journal, 6(2), 90–99. doi:10.35860/iarej.1089568.

Campana, C., Leger, R., Sonnier, R., Ferry, L., & Ienny, P. (2018). Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Composites Part A: Applied Science and Manufacturing, 107, 171–179. doi:10.1016/j.compositesa.2017.12.029.

Morimoto, T., Suzuki, T., & Iizuka, H. (2015). Wear rate and fracture toughness of porous particle-filled phenol composites. Composites Part B: Engineering, 77, 19–26. doi:10.1016/j.compositesb.2015.03.007.

Sakuri, S., Surojo, E., Ariawan, D., & Prabowo, A. R. (2020). Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments. Composites Communications, 21, 100419. doi:10.1016/j.coco.2020.100419.

Akbar, H. I., Surojo, E., Ariawan, D., & Prabowo, A. R. (2020). Technical investigation of sea sand reinforcement for novel al6061- sea sand composites: Identification of performance and mechanical properties. Periodico Tche Quimica, 17(36), 47–57. doi:10.52571/ptq.v17.n36.2020.63_periodico36_pgs_47_57.pdf.

Ariawan, D., Rivai, T. S., Surojo, E., Hidayatulloh, S., Akbar, H. I., & Prabowo, A. R. (2020). Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF. Alexandria Engineering Journal, 59(5), 3981–3989. doi:10.1016/j.aej.2020.07.005.

Agumba, D. O., Park, G., Woong Kim, J., & Kim, J. (2024). Biobased natural fiber-reinforced composites derived from lignin-based resin and mercerized jute fibers. Materials Letters, 360, 136055. doi:10.1016/j.matlet.2024.136055.

Akbar, H. I., Surojo, E., Ariawan, D., Prabowo, A. R., & Imanullah, F. (2021). Fabrication of AA6061-sea sand composite and analysis of its properties. Heliyon, 7(8). doi:10.1016/j.heliyon.2021.e07770.

Sakuri, S., Surojo, E., Ariawan, D., & Prabowo, A. R. (2020). Investigation of Agave cantala-based composite fibers as prosthetic socket materials accounting for a variety of alkali and microcrystalline cellulose treatments. Theoretical and Applied Mechanics Letters, 10(6), 405–411. doi:10.1016/j.taml.2020.01.052.

Ariawan, D., Surojo, E., Triyono, J., Purbayanto, I. F., Pamungkas, A. F., & Prabowo, A. R. (2020). Micromechanical analysis on tensile properties prediction of discontinuous randomized zalacca fibre/high-density polyethylene composites under critical fibre length. Theoretical and Applied Mechanics Letters, 10(1), 57–65. doi:10.1016/j.taml.2020.01.009.

Akbar, H. I., Surojo, E., Ariawan, D., & Prabowo, A. R. (2020). Experimental study of quenching agents on Al6061–Al2O3 composite: Effects of quenching treatment to microstructure and hardness characteristics. Results in Engineering, 6, 100105. doi:10.1016/j.rineng.2020.100105.

Laraba, S. R., Rezzoug, A., Halimi, R., Wei, L., yang, Y., Abdi, S., Li, Y., & Jie, W. (2022). Development of sandwich using low-cost natural fibers: Alfa-Epoxy composite core and jute/metallic mesh-Epoxy hybrid skin composite. Industrial Crops and Products, 184, 115093. doi:10.1016/j.indcrop.2022.115093.

Fanani, E. W. A., Surojo, E., Prabowo, A. R., & Akbar, H. I. (2021). Recent progress in hybrid aluminum composite: Manufacturing and application. Metals, 11(12), 1919. doi:10.3390/met11121919.

dua, S., Khatri, H., Naveen, J., Jawaid, M., Jayakrishna, K., Norrrahim, M. N. F., & Rashedi, A. (2023). Potential of natural fiber based polymeric composites for cleaner automotive component production -a comprehensive review. Journal of Materials Research and Technology, 25, 1086–1104. doi:10.1016/j.jmrt.2023.06.019.

Fanani, E. W. A., Surojo, E., Prabowo, A. R., Ariawan, D., & Akbar, H. I. (2021). Recent development in aluminum matrix composite forging: Effect on the mechanical and physical properties. Procedia Structural Integrity, 33, 3–10. doi:10.1016/j.prostr.2021.10.002.

Graziano, A., Garcia, C., Jaffer, S., Tjong, J., Yang, W., & Sain, M. (2020). Functionally tuned nanolayered graphene as reinforcement of polyethylene nanocomposites for lightweight transportation industry. Carbon, 169, 99–110. doi:10.1016/j.carbon.2020.07.040.

Hua, Z., Tang, L., Li, L., Wu, M., & Fu, J. (2023). Environmental biotechnology and the involving biological process using graphene-based biocompatible material. Chemosphere, 339, 139771. doi:10.1016/j.chemosphere.2023.139771.

Dhiwar, D., Kumar Verma, S., Gupta, N., & Agnihotri, P. K. (2024). Augmenting the fracture toughness and structural health monitoring capabilities in Kevlar/epoxy composites using carbon nanotubes. Engineering Fracture Mechanics, 297, 109877. doi:10.1016/j.engfracmech.2024.109877.

Smaradhana, D. F., Prabowo, A. R., & Ganda, A. N. F. (2021). Exploring the potential of graphene materials in marine and shipping industries – A technical review for prospective application on ship operation and material-structure aspects. Journal of Ocean Engineering and Science, 6(3), 299–316. doi:10.1016/j.joes.2021.02.004.

Naufal, A. M., Prabowo, A. R., Muttaqie, T., Hidayat, A., Purwono, J., Adiputra, R., Akbar, H. I., & Smaradhana, D. F. (2024). Characterization of sandwich materials – Nomex-Aramid carbon fiber performances under mechanical loadings: Nonlinear FE and convergence studies. Reviews on Advanced Materials Science, 63(1), 20230177. doi:10.1515/rams-2023-0177.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-04-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sunardi Sunardi, Dody Ariawan, Eko Surojo, Aditya Rio Prabowo, Tohid Ghanbari-Ghazijahani, Cahyo Hadi Wibowo, Hammar Ilham Akbar