Enhancing Control Systems with Neural Network-Based Intelligent Controllers

Kevin Puentes, Luis Morales, David F. Pozo-Espin, Viviana Moya

Abstract


The primary challenge faced by a neural controller in the dynamic model of a mobile robot lies in its ability to address the inherent complexity of the system dynamics. Given that mobile robots exhibit nonlinear movements and are subject to diverse environmental conditions, they contend with a challenging dynamic environment. The neural controllers must demonstrate the capability to continuously adapt and effectively learn to manage the variability present in the dynamic of the robot. This paper presents two intelligent controllers utilizing neural networks, showcasing their relevance in the field of robotics. The first controller, referred to as the neural PID (PIDN), integrates the traditional PID controller with a neural component. The second controller leverages the dynamic model of a differential robot to improve trajectory tracking, employing a parallel architecture that combines PID with neural networks (PID+NN). Our proposals adhere to a cascading structure, where the outer loop takes the lead in reducing position errors through a kinematic controller, while concurrently, the inner loop is employed to regulate linear and angular velocities through the proposed controllers. The controllers are validated in the CoppeliaSIM simulator, offering a realistic setting for evaluating the behavior of the chosen Pioneer 3-DX robot. To comprehensively assess controller performance, three strategies are examined: PIDN, PID+NN, and the conventional PID. Through a blend of qualitative and quantitative analyses, employing diverse performance metrics, the advantages of our proposed controllers become apparent.

 

Doi: 10.28991/ESJ-2024-08-04-01

Full Text: PDF


Keywords


Adaptive Neural Controller; Mobile Robot; Neural Networks; PID; Trajectory Tracking.

References


Loganathan, A., & Ahmad, N. S. (2023). A systematic review on recent advances in autonomous mobile robot navigation. Engineering Science and Technology, an International Journal, 40, 101343. doi:10.1016/j.jestch.2023.101343.

Kot, T., & Novák, P. (2018). Application of virtual reality in teleoperation of the military mobile robotic system TAROS. International Journal of Advanced Robotic Systems, 15(1), 172988141775154. doi:10.1177/1729881417751545.

Nevot Cercós, J. (2000). Design of an advanced controller based on neural networks for the management of the air-gasoline mixture in a reciprocating engine. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain. (In Spanish).

Åstrand, B., & Baerveldt, A. J. (2002). An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous Robots, 13(1), 21–35. doi:10.1023/A:1015674004201.

Cumbajin, A. (2020). Development of a navigation system based on the Pioneer P3-DX platform for the transport of materials. Universidad de las Fuerzas Armadas, Sangolquí, Ecuador. (In Spanish).

Zhang, L. J., Jia, H. M., & Qi, X. (2011). NNFFC-adaptive output feedback trajectory tracking control for a surface ship at high speed. Ocean Engineering, 38(13), 1430–1438. doi:10.1016/j.oceaneng.2011.07.006.

Zhao, T., Qin, P., & Zhong, Y. (2023). Trajectory Tracking Control Method for Omnidirectional Mobile Robot Based on Self-Organizing Fuzzy Neural Network and Preview Strategy. Entropy, 25(2), 248. doi:10.3390/e25020248.

Somlyai, L., & Vamossy, Z. (2012). Map building with RGB-D camera for Mobil robot. 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), 489-493. doi:10.1109/ines.2012.6249883.

Csaba, G., Somlyai, L., & Vamossy, Z. (2018). Mobil robot navigation using 2D LIDAR. 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI). doi:10.1109/sami.2018.8324002.

Sarabia Morales, B. F. (2017). Design and simulation of three classic and robust control techniques applied to trajectory tracking in the presence of fixed delays for the Pioneer 3DX robotic platform. Bachelor's Thesis, Escuela Politécnica Nacional, Quito, Ecuador.

Seghour, S., & Tadjine, M. (2017). Consensus-based approach and reactive fuzzy navigation for multiple no-holonomic mobile robots. 2017 6th International Conference on Systems and Control, ICSC 2017, 492–497. doi:10.1109/ICoSC.2017.7958658.

Shen, X., & Shi, W. (2019). Adaptive Trajectory Tracking Control of Wheeled Mobile Robot. 2019 Chinese Control and Decision Conference (CCDC), 5161-5165. doi:10.1109/ccdc.2019.8833019.

Vo, A. T., Kang, H.-J., & Nguyen, V.-C. (2017). An output feedback tracking control based on neural sliding mode and high order sliding mode observer. 2017 10th International Conference on Human System Interactions (HSI), 161-165. doi:10.1109/hsi.2017.8005020.

Ben Halima Abid, D., Allagui, N. Y., & Derbel, N. (2017). Navigation and trajectory tracking of mobile robot based on kinematic PI controller. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 252-256. doi:10.1109/sta.2017.8314966.

Sanchez, E. M., Ramirez, J. P., & Angeles, A. R. (2021). Autonomous navigation of a mobile robot using a network of Hindmarsh-Rose (HR) neurons. 2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). doi:10.1109/cce53527.2021.9633035.

Alouache, A., & Wu, Q. (2018). Genetic Algorithms for Trajectory Tracking of Mobile Robot Based on PID Controller. 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), 237-241. doi:10.1109/iccp.2018.8516587.

Matich, D. J. (2001). Neural Networks: Basic Concepts and Applications. National University of Technology—Faculty Regional Rosario. Group of Applied Research in the Chemical Engineering (GIAIQ), Mexico City, Mexico.

Asai, M., Chen, G., & Takami, I. (2019). Neural network trajectory tracking of tracked mobile robot. 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD). doi:10.1109/ssd.2019.8893152.

Haykin, S. (2009). Neural networks and learning machines. Pearson Education, Inc., Upper Saddle River, United States.

Trujillo, D., Morales, L. A., Chávez, D., & Pozo, D. F. (2023). Trajectory Tracking Control of a Mobile Robot using Neural Networks. Emerging Science Journal, 7(6), 1843–1862. doi:10.28991/ESJ-2023-07-06-01.

Puentes, K., & Morales, L. (2023). Trajectory Tracking of a Mobile Robot Using a PID Controller Combined with Neural Networks. 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM). doi:10.1109/etcm58927.2023.10309094.

Hui, Z., & Ji-hong, S. (2014). Neural network robust control of ship trajectory tracking. 2014 IEEE International Conference on Mechatronics and Automation. doi:10.1109/icma.2014.6885899.

Deng, J., Li, Z., & Su, C.-Y. (2014). Trajectory tracking of mobile robots based on model predictive control using primal dual neural network. Proceedings of the 33rd Chinese Control Conference. doi:10.1109/chicc.2014.6896401.

da Silva Lima, G., Moreira, V. R. F., & Bessa, W. M. (2023). Accurate trajectory tracking control with adaptive neural networks for omnidirectional mobile robots subject to unmodeled dynamics. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(1), 48. doi:10.1007/s40430-022-03969-y.

Hoang, T. T., Hiep, D. T., Duong, B. G., & Vinh, T. Q. (2013). Trajectory tracking control of the nonholonomic mobile robot using torque method and neural network. 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). doi:10.1109/iciea.2013.6566660.

Dang, S. T., Dinh, X. M., Kim, T. D., Xuan, H. Le, & Ha, M. H. (2023). Adaptive Backstepping Hierarchical Sliding Mode Control for 3-Wheeled Mobile Robots Based on RBF Neural Networks. Electronics (Switzerland), 12(11), 2345. doi:10.3390/electronics12112345.

Lewis, F. L., Vrabie, D. L., & Syrmos, V. L. (2012). Optimal Control (3rd Ed.), John Wiley & Sons, Hoboken, United States. doi.:10.1002/9781118122631.

Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros.2016.7759428.

Huang, C.-M., & Wang, F.-L. (2007). An RBF Network with OLS and EPSO Algorithms for Real-Time Power Dispatch. IEEE Transactions on Power Systems, 22(1), 96–104. doi:10.1109/tpwrs.2006.889133.

Cheon, H., Kim, T., Kim, B. K., Moon, J., & Kim, H. (2023). Online Waypoint Path Refinement for Mobile Robots Using Spatial Definition and Classification Based on Collision Probability. IEEE Transactions on Industrial Electronics, 70(7), 7004–7013. doi:10.1109/TIE.2022.3203684.

Morales, L., Herrera, M., Camacho, O., Leica, P., & Aguilar, J. (2021). LAMDA Control Approaches Applied to Trajectory Tracking for Mobile Robots. IEEE Access, 9, 37179–37195. doi:10.1109/ACCESS.2021.3062202.

Khoshlessan, M., Asaei, B., & Farhangi, B. (2015). Analysis of fly-back PV micro-inverter and optimizing control system using Finite Gradient Descent Method. 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), 287-292. doi:10.1109/optim.2015.7427011.

Anushree, R., & Prasad, B. K. S. (2016). Design and development of novel control strategy for trajectory tracking of mobile robot: Featured with tracking error minimization. IEEE Annual India Conference, 1-6. doi:10.1109/indicon.2016.7839162.

Schuler, A. J., Nachbar, P., Nossek, J. A., & Chua, L. O. (1992). Learning state space trajectories in cellular neural networks. CNNA ’92 Proceedings Second International Workshop on Cellular Neural Networks and Their Applications, 68-73. doi:10.1109/cnna.1992.274353.

Zheng, Y., Zheng, J., Shao, K., Zhao, H., Xie, H., & Wang, H. (2024). Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots: A Barrier Function Sliding Mode Approach. IEEE/CAA Journal of Automatica Sinica, 11(4), 1007–1021. doi:10.1109/JAS.2023.124002.

Rossomando, F. G., Soria, C., & Carelli, R. (2014). Sliding mode neuro adaptive control in trajectory tracking for mobile robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 74(3–4), 931–944. doi:10.1007/s10846-013-9843-5.

Minguez, J., Montano, L., & Santos-Victor, J. (2002). Reactive navigation for non-holonomic robots using the ego-kinematic space. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 3, 3074–3080. doi:10.1109/robot.2002.1013699.

Masutani, Y., Mikawa, M., Maru, N., & Miyazaki, F. (1994). Visual servoing for non-holonomic mobile robots. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94), 2, 1133–1140. doi:10.1109/iros.1994.407471.

Moudoud, B., Aissaoui, H., & Diany, M. (2020). Robust trajectory tracking control based on sliding mode of Differential Driving Four-Wheeled Mobile Robot. 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), 1-5. doi:10.1109/icoa49421.2020.9094510.

Singh, S., & Mitra, R. (2014). Comparative analysis of robustness of optimally offline tuned PID controller and Fuzzy supervised PID controller. 2014 Recent Advances in Engineering and Computational Sciences (RAECS). doi:10.1109/raecs.2014.6799546.

Yu, B. H., Kim, D. H., Yu, B. G., Lee, S. Y., & Han, C. S. (2008). Development of prototype of an Unmanned Transport Robot for transport of construction materials. 2008 International Conference on Control, Automation and Systems, 448-452. doi:10.1109/iccas.2008.4694682.

Alippi, C. (1991). Weight update in back-propagation neural networks: the role of activation functions. Proceedings 1991 IEEE International Joint Conference on Neural Networks, 560-565. doi:10.1109/ijcnn.1991.170459.

Khoukhi, A., Hamdan, M., & Al-Sunni, F. (2012). ANFIS Based-Kinematic Modeling of Mobile Parallel Robot. 2012 UKSim 14th International Conference on Computer Modelling and Simulation, 242-247. doi:10.1109/uksim.2012.42.

Yu, N., Luo, J., Shu, S., & Sun, B. (2010). Application of Delta-bar-Delta Rules Trained Back-Propagation Neural Networks in Nuclear Fusion Pattern Recognition. 2010 International Symposium on Intelligence Information Processing and Trusted Computing, 258-261. doi:10.1109/iptc.2010.167.

Hong, X., & Tao, X. (2009). Implementation of the Dahlin Digital Controller by IIR Network Method. 2009 Second International Conference on Intelligent Computation Technology and Automation, 621-624. doi:10.1109/icicta.2009.155.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-04-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Kevin Puentes, Luis Morales, David Fernando Pozo-Espin, Viviana Moya