Extreme Rainfall Trends and Hydrometeorological Disasters in Tropical Regions: Implications for Climate Resilience

Elsa Yanfatriani, Marzuki Marzuki, Mutya Vonnisa, Pakhrur Razi, Cahyo A. Hapsoro, Ravidho Ramadhan, Helmi Yusnaini

Abstract


Hydrometeorological disasters due to extreme weather events represent a significant threat to the security of life in Jambi Province. In order to develop effective strategies for mitigating this threat, it is essential to gain a comprehensive understanding of the underlying dynamics that give rise to such disasters. Despite the high frequency of these events, more research is needed on the complex relationship between trends in extreme indices and the frequency of hydrometeorological disasters in this region. This study addresses this gap by utilizing rainfall data from 2008 to 2020 from the Integrated Multi-satellite Retrievals for GPM (IMERG) and hydrometeorological disaster data from the National Disaster Management Agency (BNPB). A range of extreme rainfall indices, including PRCPTOT, R85P, R95P, R99P, CWD, CDD, R1mm, R10mm, R20mm, R50mm, RX1Day, RX5Day, and SDII, were subjected to careful analysis concerning hydrometeorological disasters, including floods, landslides, tornadoes, droughts, and forest fires. Notable results indicate a significant increasing trend (p < 0.05) for the CWD index, while decreasing trends are observed for R85P, R95P, R99P, R50mm, RX1Day, RX5Day, and SDII. PRCPTOT and R20mm show decreasing trends, and CDD shows an increasing trend, although it is not statistically significant (p > 0.05). Subsequently, there was a significant increase in landslides and tornadoes, while forest fires and floods showed an insignificant increase (p > 0.05). Drought exhibited a significant decreasing trend in Jambi. Correlation analysis revealed the complex relationship between extreme weather indices and hydrometeorological disasters. The positive correlations observed between most extreme rainfall indices and floods and landslides, except for CDD, indicate that extreme rainfall is the primary cause of these disasters in Jambi. The correlation is particularly pronounced in areas with mountainous topography, where landslides are more prevalent. The positive correlations observed between CDD and droughts and forest fires suggest that periods of reduced rainfall and increased drought contribute to these disasters. This correlation is more robust in districts with extensive peatlands. The results provide valuable insights into the vulnerability of Jambi Province to hydrometeorological disasters and highlight the importance of understanding regional variations in extreme weather events. These findings improve our understanding of the interactions between climate indices and disasters and provide the basis for informed risk reduction and adaptation strategies in changing climatic conditions.

 

Doi: 10.28991/ESJ-2024-08-05-012

Full Text: PDF


Keywords


Hydrometeorological Disasters; Extreme Weather; Climate Change; Jambi.

References


Lisnawati, Taufik, M., Dasanto, B. D., & Sopaheluwakan, A. (2022). Fire Danger on Jambi Peatland Indonesia based on Weather Research and Forecasting Model. Agromet, 36(1), 1–10. doi:10.29244/j.agromet.36.1.1-10.

Saragih, I. J. A., Tarigan, K., Sinambela, M., Situmorang, M., Sembiring, K., Humaidi, S., & Sirait, M. (2021). Utilization of Red-Green-Blue (RGB) modification composite for nighttime convective cloud monitoring over North Sumatra region. IOP Conference Series: Earth and Environmental Science, 893(1), 12019. doi:10.1088/1755-1315/893/1/012019.

Rais, A. F., Yunita, R., & Hananto, T. S. (2021). The Influence of Mesoscale Convective System on Extreme Rain on the West Coast of Sumatra. Majalah Geografi Indonesia, 35(1), 9. doi:10.22146/mgi.60598.

Merten, J., Stiegler, C., Hennings, N., Purnama, E. S., Röll, A., Agusta, H., Dippold, M. A., Fehrmann, L., Gunawan, D., Hölscher, D., Knohl, A., Kückes, J., Otten, F., Zemp, D. C., & Faust, H. (2020). Flooding and land use change in Jambi Province, Sumatra: Integrating local knowledge and scientific inquiry. Ecology and Society, 25(3), 1–29. doi:10.5751/ES-11678-250314.

BNPB. (2024). Geoportal Data Bencana Indonesia – BNPB, Jakarta, Indonesia. Available online: https://gis.bnpb.go.id (accessed on September 2024).

Sundari, C., Purnomo, E. P., Mutiarin, D., Adrian, M. M., Suling, C. F., & Pratama, I. (2022). Sustainable Forest Governance: A New Policy Strategy in Handling Forest Fires in Jambi Province. IOP Conference Series: Earth and Environmental Science, 1111(1), 12005. doi:10.1088/1755-1315/1111/1/012005.

Bonaccorso, B., & Peres, D. J. (2022). Analysis of Extreme Hydrometeorological Events. Resources, 11(6), 55. doi:10.3390/resources11060055.

Haider, S., Karim, M. R., Islam, M. S., Megumi, T. A., & Rahnama, Q. S. (2024). Extreme weather events and Spatio-temporal characterization of climate change variables in Bangladesh during 1975–2019. Heliyon, 10(5), e27118. doi:10.1016/j.heliyon.2024.e27118.

Taye, M. T., & Dyer, E. (2024). Hydrologic Extremes in a Changing Climate: a Review of Extremes in East Africa. Current Climate Change Reports, 10(1), 1–11. doi:10.1007/s40641-024-00193-9.

Bottino, M. J., Nobre, P., Giarolla, E., da Silva Junior, M. B., Capistrano, V. B., Malagutti, M., Tamaoki, J. N., de Oliveira, B. F. A., & Nobre, C. A. (2024). Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil. Scientific Reports, 14(1), 5131. doi:10.1038/s41598-024-55176-5.

Szöllősi-Nagy, A. (2022). On climate change, hydrological extremes and water security in a globalized world. Scientia et Securitas, 2(4), 504–509. doi:10.1556/112.2021.00081.

Zhu, H., Chen, K., Chai, H., Ye, Y., & Liu, W. (2024). Characterizing extreme drought and wetness in Guangdong, China using global navigation satellite system and precipitation data. Satellite Navigation, 5(1), 1-17. doi:10.1186/s43020-023-00121-6.

Misnawati, & Perdanawanti, M. (2019). Trend of Extreme Precipitation over Sumatera Island for 1981-2010. Agromet, 33(1), 41–51. doi:10.29244/j.agromet.33.1.41-51.

Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., Collins, D. A., Daw, G., Finet, A., Gunawan, D., Inape, K., Isobe, H., Kestin, T. S., Lefale, P., Leyu, C. H., Lwin, T., Maitrepierre, L., Ouprasitwong, N., Page, C. M., … Yee, D. (2001). Trends in extreme daily rainfall and temperature in southeast Asia and the south Pacific: 1961-1998. International Journal of Climatology, 21(3), 269–284. doi:10.1002/joc.610.

Azizah, S. N. N., June, T., Salmayenti, R., Ma’rufah, U., & Yonny Koesmaryono. (2022). Land Use Change Impact on Normalized Difference Vegetation Index, Surface Albedo, and Heat Fluxes in Jambi Province: Implications to Rainfall. Agromet, 36(1), 51–59. doi:10.29244/j.agromet.36.1.51-59.

Zhang, D., Yang, M., Ma, M., Tang, G., Wang, T., Zhao, X., Ma, S., Wu, J., & Wang, W. (2022). Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sensing, 14(4), 928. doi:10.3390/rs14040928.

Wei, L., Jiang, S., Ren, L., Zhang, L., Wang, M., & Duan, Z. (2020). Preliminary utility of the retrospective IMERG precipitation product for large-scale drought monitoring over Mainland China. Remote Sensing, 12(18), 2993. doi:10.3390/RS12182993.

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K. L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., & Xie, P. (2020). Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite Precipitation Measurement. Advances in Global Change Research, 67, Springer, Cham, Switzerland. doi:10.1007/978-3-030-24568-9_19.

Ramadhan, R., Yusnaini, H., Marzuki, M., Muharsyah, R., Suryanto, W., Sholihun, S., Vonnisa, M., Harmadi, H., Ningsih, A. P., Battaglia, A., Hashiguchi, H., & Tokay, A. (2022). Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales. Remote Sensing, 14(5), 1172. doi:10.3390/rs14051172.

Ramadhan, R., Marzuki, M., Yusnaini, H., Muharsyah, R., Suryanto, W., Sholihun, S., Vonnisa, M., Battaglia, A., & Hashiguchi, H. (2022). Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sensing, 14(2), 412. doi:10.3390/rs14020412.

Marzuki, M., Ramadhan, R., Yusnaini, H., Vonnisa, M., Safitri, R., & Yanfatriani, E. (2023). Changes in Extreme Rainfall in New Capital of Indonesia (IKN) Based on 20 Years of GPM-IMERG Data. Trends in Sciences, 20(11), 6935. doi:10.48048/tis.2023.6935.

Ramadhan, R., Marzuki, M., Suryanto, W., Sholihun, S., Yusnaini, H., Muharsyah, R., & Hanif, M. (2022). Trends in rainfall and hydrometeorological disasters in new capital city of Indonesia from long-term satellite-based precipitation products. Remote Sensing Applications: Society and Environment, 28, 100827. doi:10.1016/j.rsase.2022.100827.

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. doi:10.1080/01621459.1968.10480934.

Kahya, E., & Kalayci, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1–4), 128–144. doi:10.1016/j.jhydrol.2003.11.006.

Shahid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology, 104(3–4), 489–499. doi:10.1007/s00704-010-0363-y.

Wilis, R., & Nugroho, S. (2017). The Decrasing Trend of Precipitation Observed at Watersheds in Padang for The Period 1975-2013. Sumatra Journal of Disaster, Geography and Geography Education, 1(2), 222. doi:10.24036/sjdgge.v1i2.82.

Zaki, M. K., Noda, K., Ito, K., Komariah, & Ariyanto, D. P. (2021). Long-term trends of diurnal rainfall and hydro-meteorological disaster in the new capital city of Indonesia. IOP Conference Series: Earth and Environmental Science, 724(1), 12046. doi:10.1088/1755-1315/724/1/012046.

Petrow, T., & Merz, B. (2009). Trends in flood magnitude, frequency and seasonality in Germany in the period 1951-2002. Journal of Hydrology, 371(1–4), 129–141. doi:10.1016/j.jhydrol.2009.03.024.

Bertola, M., Viglione, A., Lun, D., Hall, J., & Blöschl, G. (2019). Flood trends in Europe: are changes in small and big floods different? Hydrology and Earth System Sciences, 23(4), 1805–1822. doi:10.5194/HESS-2019-523.

Petley, D. N., Hearn, G. J., Hart, A., Rosser, N. J., Dunning, S. A., Oven, K., & Mitchell, W. A. (2007). Trends in landslide occurrence in Nepal. Natural Hazards, 43(1), 23–44. doi:10.1007/s11069-006-9100-3.

Gensini, V. A., & Brooks, H. E. (2018). Spatial trends in United States tornado frequency. NPJ Climate and Atmospheric Science, 1(1), 38. doi:10.1038/s41612-018-0048-2.

Ferijal, T., Batelaan, O., & Shanafield, M. (2021). Rainy season drought severity trend analysis of the Indonesian maritime continent. International Journal of Climatology, 41(S1), E2194–E2210. doi:10.1002/joc.6840.

Riyanto, I. A., Cahyadi, A., Kurniadhini, F., Bachtiar, H., Apriyana, D., & Aji Caraka, B. K. (2020). Understanding forest fire management in Indonesia from a global perspective. ASEAN Journal on Science and Technology for Development, 37(1), 1–6. doi:10.29037/AJSTD.593.

Fitriany, A. A., Flatau, P. J., Khoirunurrofik, K., & Riama, N. F. (2021). Assessment on the use of meteorological and social media information for forest fire detection and prediction in Riau, Indonesia. Sustainability (Switzerland), 13(20), 11188. doi:10.3390/su132011188.

Limia Budiarti, R., & Rahayu, M. S. (2022). Clustering Analysis of Disaster-Prone Zones at the Jambi Province Basarnas Office Using the K-Means Method. Jurnal Akademika, 15(1), 83–89. doi:10.53564/akademika.v15i1.847.

Sze, J. S., Jefferson, & Lee, J. S. H. (2019). Evaluating the social and environmental factors behind the 2015 extreme fire event in Sumatra, Indonesia. Environmental Research Letters, 14(1), 15001. doi:10.1088/1748-9326/aaee1d.

Muñoz-Torrero Manchado, A., Allen, S., Ballesteros-Cánovas, J. A., Dhakal, A., Dhital, M. R., & Stoffel, M. (2021). Three decades of landslide activity in western Nepal: new insights into trends and climate drivers. Landslides, 18(6), 2001–2015. doi:10.1007/s10346-021-01632-6.

Mateo, J., Ballart, D., Brucet, C., Aran, M., & Bech, J. (2009). A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia. Atmospheric Research, 93(1–3), 131–146. doi:10.1016/j.atmosres.2008.09.030.

Rodysill, J. R., Russell, J. M., Crausbay, S. D., Bijaksana, S., Vuille, M., Edwards, R. L., & Cheng, H. (2013). A severe drought during the last millennium in East Java, Indonesia. Quaternary Science Reviews, 80, 102–111. doi:10.1016/j.quascirev.2013.09.005.

Mulyanti, H., Istadi, I., & Gernowo, R. (2023). Historical, Recent, and Future Threat of Drought on Agriculture in East Java, Indonesia: A Review. E3S Web of Conferences, 448, 3016. doi:10.1051/e3sconf/202344803016.

Gatto, M., Wollni, M., & Qaim, M. (2015). Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors. Land Use Policy, 46, 292–303. doi:10.1016/j.landusepol.2015.03.001.

Ma’rufah, U., June, T., Ali, A. A., Faqih, A., Koesmaryono, Y., Stiegler, C., & Knohl, A. (2022). Vulnerability of Primary Productivity and Its Carbon Use Efficiency to Unfavorable Climatic Conditions in Jambi Province, Indonesia. Journal of Mathematical and Fundamental Sciences, 54(1), 54–75. doi:10.5614/j.math.fund.sci.2022.54.1.4.

Aulia, F. R., June, T., & Koesmaryono, Y. (2022). Increasing smog haze and its impact on oil palm evapotranspiration and gross primary production during the 2015 fire: special discussion on diffuse radiation. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 12(3), 511–521. doi:10.29244/jpsl.12.3.511-521.

Dafri, M., Nurdiati, S., & Sopaheluwakan, A. (2021). Quantifying ENSO and IOD impact to hotspot in Indonesia based on Heterogeneous Correlation Map (HCM). Journal of Physics: Conference Series, 1869(1), 12150. doi:10.1088/1742-6596/1869/1/012150.

Zaini, A. Z. A., Vonnisa, M., & Marzuki, M. (2024). Impact of different ENSO positions and Indian Ocean Dipole events on Indonesian rainfall. Vietnam Journal of Earth Sciences, 46(1), 100–119. doi:10.15625/2615-9783/19926.

Stolle, F., Chomitz, K. M., Lambin, E. F., & Tomich, T. P. (2003). Land use and vegetation fires in Jambi Province, Sumatra, Indonesia. Forest Ecology and Management, 179(1–3), 277–292. doi:10.1016/S0378-1127(02)00547-9.

Achmad, E., Nengah Surati Jaya, I., Saleh, M. B., & Kuncahyo, B. (2013). Biomass estimation using ALOS PALSAR for identification of lowland forest transition ecosystem in Jambi province. Jurnal Manajemen Hutan Tropika, 19(2), 145–155. doi:10.7226/jtfm.19.2.145.

Thoha, A. S., Saharjo, B. H., Boer, R., & Ardiansyah, M. (2019). Characteristics and causes of forest and land fires in Kapuas district, Central Kalimantan Province, Indonesia. Biodiversitas, 20(1), 110–117. doi:10.13057/biodiv/d200113.

Ponomarev, E. I., Kharuk, V. I., & Ranson, K. J. (2016). Wildfires dynamics in Siberian larch forests. Forests, 7(6), 125. doi:10.3390/f7060125.

Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E., & Heinsch, F. A. (2013). The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale. International Journal of Wildland Fire, 22(7), 894–909. doi:10.1071/WF12149.

McEvoy, D. J., Hobbins, M., Brown, T. J., VanderMolen, K., Wall, T., Huntington, J. L., & Svoboda, M. (2019). Establishing relationships between drought indices and wildfire danger outputs: A test case for the California-Nevada drought early warning system. Climate, 7(4), 52. doi:10.3390/cli7040052.

Pontoh, R. S., Pinem, F. F., Ritma, A. P. N., & Putri, I. A. C. (2022). Losses and Impacts of Forest and Land Fires in the Economic and Health Sector in Indonesia. Environmental and Ecological Statistics, 1-27.

Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science, 120(3), 359–373. doi:10.1007/s12040-011-0082-5.

Tazen, F., Diarra, A., Kabore, R. F. W., Ibrahim, B., Bologo/Traoré, M., Traoré, K., & Karambiri, H. (2019). Trends in flood events and their relationship to extreme rainfall in an urban area of Sahelian West Africa: The case study of Ouagadougou, Burkina Faso. Journal of Flood Risk Management, 12(S1), 12507. doi:10.1111/jfr3.12507.

Al-Hinai, H., & Abdalla, R. (2021). Mapping coastal flood susceptible areas using shannon’s entropy model: The case of muscat governorate, Oman. ISPRS International Journal of Geo-Information, 10(4), 252. doi:10.3390/ijgi10040252.

Ghanbari, M., Arabi, M., Kao, S. C., Obeysekera, J., & Sweet, W. (2021). Climate Change and Changes in Compound Coastal-Riverine Flooding Hazard Along the U.S. Coasts. Earth’s Future, 9(5), 2021 002055. doi:10.1029/2021EF002055.

Chen, Y. C., Chang, K. T., Chiu, Y. J., Lau, S. M., & Lee, H. Y. (2013). Quantifying rainfall controls on catchment-scale landslide erosion in Taiwan. Earth Surface Processes and Landforms, 38(4), 372–382. doi:10.1002/esp.3284.

Mallick, J., Alqadhi, S., Talukdar, S., Alsubih, M., Ahmed, M., Khan, R. A., Kahla, N. Ben, & Abutayeh, S. M. (2021). Risk assessment of resources exposed to rainfall induced landslide with the development of GIS and RS based ensemble metaheuristic machine learning algorithms. Sustainability (Switzerland), 13(2), 1–30. doi:10.3390/su13020457.

Kumar, A., Asthana, A. K. L., Priyanka, R. S., Jayangondaperumal, R., Gupta, A. K., & Bhakuni, S. S. (2017). Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology, 284, 72–87. doi:10.1016/j.geomorph.2017.01.003.

Pham, B. T., Phong, T. V., Avand, M., Al-Ansari, N., Singh, S. K., Le, H. V., & Prakash, I. (2020). Improving Voting Feature Intervals for Spatial Prediction of Landslides. Mathematical Problems in Engineering, 2020, 1–15. doi:10.1155/2020/4310791.

Gao, J. (1993). Identification of topographic settings conducive to landsliding from dem in Nelson County, Virginia, U.S.A. Earth Surface Processes and Landforms, 18(7), 579–591. doi:10.1002/esp.3290180702.

Rhodes, C. L., & Senkbeil, J. C. (2014). Factors contributing to tornado genesis in land falling Gulf of Mexico tropical cyclones. Meteorological Applications, 21(4), 940–947. doi:10.1002/met.1437.

Allen, J. T., Allen, E. R., Richter, H., & Lepore, C. (2021). Australian tornadoes in 2013: Implications for climatology and forecasting. Monthly Weather Review, 149(5), 1211–1232. doi:10.1175/MWR-D-20-0248.1.

Miller, D. E., Wang, Z., Trapp, R. J., & Harnos, D. S. (2020). Hybrid Prediction of Weekly Tornado Activity Out to Week 3: Utilizing Weather Regimes. Geophysical Research Letters, 47(9), 2020 087253. doi:10.1029/2020GL087253.

Peng, J., Dadson, S., Leng, G., Duan, Z., Jagdhuber, T., Guo, W., & Ludwig, R. (2019). The impact of the Madden-Julian Oscillation on hydrological extremes. Journal of Hydrology, 571, 142–149. doi:10.1016/j.jhydrol.2019.01.055.

Sharma, H. (2021). Statistical significance or clinical significance? A researcher’s dilemma for appropriate interpretation of research results. Saudi Journal of Anaesthesia, 15(4), 431–434. doi:10.4103/sja.sja_158_21.

Yamaguchi, M., Uga, D., Nakazawa, R., & Sakamoto, M. (2020). Reliability and validity of the Mongolian version of the Zarit Caregiver Burden Interview. Journal of Physical Therapy Science, 32(7), 449–453. doi:10.1589/jpts.32.449.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-05-012

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Marzuki Marzuki