Innovative Technology for Managing Biofuel Production from Timber Industry Waste

Evgeniy V. Kostyrin, Anna E. Machina

Abstract


The relevance of this study is determined by the growing worldwide interest in renewable energy sources against the backdrop of depleting fossil fuel reserves. This study aims to develop an innovative technology for managing biofuel production from wood waste, including a set of interrelated economic and mathematical models focused on maximizing the fuel and energy efficiency of biofuels depending on the location of waste generation, feedstock moisture content, and distance to the biofuel production site. This technology should also combine the main directions of international research in the field of environmental responsibility of countries in terms of carbon dioxide (CO2) emissions and the Paris Climate Agreement. The methodological basis of the research comprises the authors’ innovative technology based on a set of interconnected economic and mathematical models and managerial decision-making systems, methods for nonlinear programming, system analysis, an information approach to the analysis of systems, accepted technological processes, norms, and standards established in the international practice of the timber industry. This innovative technology was implemented in practice using the capabilities of the MathCad and MS Excel software products. The article determines the optimal operating parameters of timber industry enterprises at which the specific thermal energy of the produced biofuel exceeds by at least 15% the thermal energy spent on processing this biofuel as an energy carrier. Wood waste biofuel production is profitable if the distance for feedstock transportation to the production site does not exceed 80 km and the relative humidity of the raw materials does not exceed 60%.

 

Doi: 10.28991/ESJ-2024-08-03-03

Full Text: PDF


Keywords


Paris Agreement; CO2 Emissions; Ecology; Economic and Mathematical Model; Fuel and Energy Efficiency; Profitability; Nonlinear Programming; Fossil Fuel; Biofuel.

References


Abdul Hamid, Z. A., & Abdull Razis, A. F. (2023). Wood Waste as a Renewable Energy Source: Effect of Pretreatment Technology for Sustainable Bioethanol Production. Wood Waste Management and Products. Sustainable Materials and Technology. Springer, Singapore. doi:10.1007/978-981-99-1905-5_5.

Chotikhun, A., Laosena, R., Kittijaruwattana, J., Lee, S. H., Sae-Ueng, K., Nakason, C., Pianroj, Y., & Salca, E. A. (2023). Elemental Compositions of Wood Plastic Pellets Made from Sawdust and Refuse-Derived Fuel (RDF) Waste. Applied Sciences (Switzerland), 13(20), 11162. doi:10.3390/app132011162.

Parfinenko, T. V., & Suvorova, L. A. (2022). Using the potential of biofuel production as a factor in the sustainable development of the TPC enterprises in the region. Competitive Potential of the Region: Assessment and Efficiency of Use, Abakan, Russia.

Sadaghiani, S., Mafakheri, F., & Chen, Z. (2023). Life Cycle Assessment of Bioenergy Production Using Wood Pellets: A Case Study of Remote Communities in Canada. Energies, 16(15), 5697. doi:10.3390/en16155697.

Bakhtina, M. N. (2022). Prospects for converting coal-fired boiler houses to alternative fuels. Abstracts of the X International Scientific Conference of Young Scientists “Young to Earth Sciences”, Moscow, Russia.

Ashizawa, M., Otaka, M., Yamamoto, H., & Akisawa, A. (2022). CO2 Emissions and Economy of Co-Firing Carbonized Wood Pellets at Coal-Fired Power Plants: The Case of Overseas Production of Pellets and Use in Japan. Energies, 15(5), 1770. doi:10.3390/en15051770.

Bala-Litwiniak, A., Musiał, D., & Nabiałczyk, M. (2023). Computational and Experimental Studies on Combustion and Co-Combustion of Wood Pellets with Waste Glycerol. Materials, 16(22), 7156. doi:10.3390/ma16227156.

Gubiy, E., & Maysyuk, E. (2023). Ecological and Economic Assessment of the Use of Wood Fuel for Heat Supply Purposes. Springer Proceedings in Earth and Environmental Sciences, 26–35. doi:10.1007/978-3-031-28978-1_4.

Vlasov, Y. N. (2021). Scientific basis for improving the technology of wood processing waste briquetting. PhD Thesis, Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia.

Mohammad, N.A.B. (2023). Concern on Wood Waste Utilization: Environment and Economic Evaluation. Wood Waste Management and Products. Sustainable Materials and Technology. Springer, Singapore. doi:10.1007/978-981-99-1905-5_3.

Datta, B. (2022). An economic analysis of biofuels: policies, trade, and employment opportunities. Handbook of Biofuels, 3–29, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-822810-4.00001-4.

Höglund, J. (2008). The Swedish fuel pellets industry: Production, market and standardization. Institutionen för skogens produkter, Uppsala, Sweden.

United Nations (2015). Paris Agreement under the United Nations Framework Convention on Climate Change. United Nations, New York, United States. Available online: https://www.un.org/en/climatechange/paris-agreement (accessed on January 2024).

Kostyrin, E., & Sokolov, E. (2023). Social Financial Technologies for the Development of Enterprises and the Russian Economy. Advances in Science, Technology and Engineering Systems Journal, 8(3), 118–135. doi:10.25046/aj080314.

Johnson, N., Ibeawuchi, O. J., Nwosi, H. A., & Ojiabo, K. T. (2023). Exploring the Fiscal of Wood-Based Renewable Biomass as an Energy Source. doi:10.20944/preprints202312.1319.v1.

Kenfack, C. E. (2022). The Paris Agreement Revisited: Diplomatic Triumphalism or Denial of Climate Justice? Journal of Environmental Protection, 13(02), 183–203. doi:10.4236/jep.2022.132012.

Khatri, P., Sahoo, K., Bergman, R., & Puettmann, M. (2021). Life Cycle Assessment of North American Laminated Strand Lumber (LSL) Production. Recent Progress in Materials, 3(4), 1–1. doi:10.21926/rpm.2104048.

Kuchler, C., Kuptz, D., Rist, E., Mack, R., Schön, C., Zimmermann, D., Dietz, D. E., Riebler, M., Blum, D. U., Borchert, D.H., & Hartmann, D. H. (2019). Contamination of wood pellets with selected mineral soils – fuel quality and combustion behavior. Proceedings of the 27th European Biomass Conference and Exhibition, May 27-30, 2019, Lisbon, Portugal.

Vourdoubas, I. (2022). Possibilities of using olive kernel wood for pellets production in Crete – Greece. Proceedings of the 16th European Biomass Conference and Exhibition, 9-12 May, 2022, Feria Valencia, Spain.

Wijeyekoon, S., Suckling, I., Fahmy, M., Hall, P., & Bennett, P. (2021). Techno-economic analysis of tannin and briquette co-production from bark waste: a case study quantifying symbiosis benefits in biorefinery. Biofuels, Bioproducts and Biorefining, 15(5), 1332–1344. doi:10.1002/bbb.2246.

Yun, H., Wang, H., Clift, R., & Bi, X. (2022). The role of torrefied wood pellets in the bio-economy: A case study from Western Canada. Biomass and Bioenergy, 163, 106523. doi:10.1016/j.biombioe.2022.106523.

Cahayani, I., Pertiwi, E. A., & Nihayati, A. (2023). Analysis of Energy Transformation Through Biofuel Energy Downstream to The National Economy. JEJAK: Jurnal Ekonomi Dan Policy, 16(2), 323–342. doi:10.15294/jejak.v16i2.43179.

Fokin, S. V., & Fomina, O. A. (2022). On structural engineering of a promising chipper for shredding logging waste. Innovative prospects of Donbass. Proceedings of the 8th International Scientific and Practical Conference. 24–26 May, 2022, Donetsk National Technical University, Donetsk, Ukraine.

Sarker, T. R., German, C. S., Borugadda, V. B., Meda, V., & Dalai, A. K. (2023). Techno-economic analysis of torrefied fuel pellet production from agricultural residue via integrated torrefaction and pelletization process. Heliyon, 9(6), 16359. doi:10.1016/j.heliyon.2023.e16359.

Czekała, W., Bartnikowska, S., Dach, J., Janczak, D., Smurzyńska, A., Kozłowski, K., Bugała, A., Lewicki, A., Cieślik, M., Typańska, D., & Mazurkiewicz, J. (2018). The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122. doi:10.1016/j.energy.2018.06.090.

The Federal Law (2022). Federal Law No. 268-FZ of July 14, 2022 “On Amendments to the Federal Law “On Waste Production and Consumption”. Moscow, Russia. Available online: https://www.consultant.ru/document/cons_doc_LAW_421836/ (accessed on February 2024).

Bezrukikh, Yu. A., & Medvedev, S. O. (2014) Environmental management in the conditions for sustainable economic development of industrial forestry complex enterprises. Economics and Entrepreneurship, 12-2(53-2), 994-996.

Ilina, E. D., Yakovleva, E. A., & Titova, E. V. (2020). Technology for Managing Secondary Resources of the Timber Industry. All-Russian Scientific Conference, Dedicated to the 90th Anniversary of the Voronezh State Forestry University Named after G.F. Morozov, 313–319. doi:10.38006/907345-73-7.2020.313.319.

L.M, M., S.R.D, F., & N, M. (2023). The socio-economic impact assessment of biofuels production in South Africa: A rapid structured review of literature. Cogent Engineering, 10(1), 1-29. doi:10.1080/23311916.2023.2192328.

Dong, K., Zeng, S., Wang, J., & Taghizadeh-Hesary, F. (2023). Assessing the role of green investment in energy efficiency: Does digital economy matter? Energy Exploration and Exploitation, 42(4), 1450-1471. doi:10.1177/01445987231216763.

Kolodiy, P. V., & Sytenok, K. P. (2021). Use of logging waste for energy purposes. Advanced Topics of the Forestry Complex, 59, 244-247.

Wahab, R., Samsi, H., & Sulaiman, M. S. (2023). Review: The Challenges in Setting-Up of a Biofuel Pellets Plant from Wood and Agricultural Waste. Borneo Journal of Sciences and Technology, 5(2), 106–116. doi:10.35370/bjost.2023.5.2-11.

Gomes, D. G., Teixeira, J. A., & Domingues, L. (2021). Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds. Applied Energy, 303, 117662. doi:10.1016/j.apenergy.2021.117662.

Srinivasan, K., Sudarsan, J. S., & Nithiyanantham, S. (2023). Need of Bioenergy—An Insight into Global Perspective. Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore. doi:10.1007/978-981-99-3002-9_2.

Ferrari, S. (2023). Bioeconomics. Handbook of the Anthropocene. Springer, Cham, Switzerland. doi:10.1007/978-3-031-25910-4_178.

Ma, Z., Liu, T., Li, J., Liu, Z., & Chen, W. (2023). Spatial Effect Analysis of Forestry Technology Innovation on Forestry Industry Economic Growth. Forests, 14(3), 557. doi:10.3390/f14030557.

Penev, N., & Andreev, Y. (2020). Sustainability Value Chain in Bioeconomics. Trakia Journal of Sciences, 18(Suppl.1), 614–618. doi:10.15547/tjs.2020.s.01.098.

Joshi, L., & Chalise, P. (2022). Ecological Wood Anatomy of Pinus roxburghii in Central Nepal. Journal of Plant Resources, 20(2), 114–123. doi:10.3126/bdpr.v20i2.56999.

Mikheevskaya, M. A., Druzyanova, V. P., Burmistrova, D. D., Shvetsova, V. V., Markov, O. B., & Ilyushenko, D. A. (2022). Energy intensity of pressing wood raw materials in the production of biofuels. News of the St. Petersburg Forestry Academy, 241, 207-217.

Machina, A. E. (2020). Economic-mathematical model of managing the financial result of a manufacturing enterprise producing wood pellets. Economics and Management: Problems, Solutions, 2(2), 86-89.

Marchenko, O. V., & Solomin, S. V. (2021). Comparative cost estimation of energy use of wood waste and traditional fuels for electricity and heat production. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 332(7), 34–42. doi:10.18799/24131830/2021/7/3261.

Furtula, M., Danon, G., Đurković, M., Svrzić, S. (2022). How to Improve Energy Consumption and GHG Emissions in the Wood Pellet Production in Serbia. Current Problems in Experimental and Computational Engineering, CNNTech 2021, Lecture Notes in Networks and Systems, vol 323, Springer, Cham, Switzerland. doi:10.1007/978-3-030-86009-7_2.

Arifuddin, R., Latief, R. U., Hamzah, S., Pangemanan, D., Aprianti, E., & Fadlillah, R. (2023). The Analysis of Sustainable Construction Strategies on the Likupang Special Economic Zone (SEZ). Civil Engineering Journal, 9, 83-93. doi:10.28991/CEJ-SP2023-09-07.

Shibu, C., Chandel, S., & Vats, P. (2023). Scaling Up of Wood Waste Utilization for Sustainable Green Future. Handbook of Research on Sustainable Consumption and Production for Greener Economies. IGI Global, Pennsylvania, United States. doi:10.4018/978-1-6684-8969-7.ch021.

Fahrussiam, F., Lestari, D., & Ningsih, R. V. (2023). Calorific Value of Several Types of Wood Through Proximate Analysis and Chemical Components Approach. Jurnal Biologi Tropis, 23(1), 355–359. doi:10.29303/jbt.v23i1.4416.

Smerdov, I. O., Pobedinsky, A. A., & Skorikov A. A. (2021). Comparative analysis of wood fuel types. Energy saving and innovative technologies in the fuel and energy complex. Proceedings of the National scientific and practical conference of students, graduate students, scientists and specialists dedicated to the 65th anniversary of Tyumen Industrial University, 27-29 October, 2021, Tyumen, Russia.

Lee, S. R., Kang, S. B., & Han, G. S. (2023). Reducing Particulates and Gaseous Emissions through Fuel Switching from Coal to Wood Pellets at Power Plants in South Korea during 2005 to 2022. BioResources, 18(4), 8458–8472. doi:10.15376/biores.18.4.8458-8472.

Lemechshenko, O., Nakipova, G., & Akhmet, G. (2022). Improving the Program-Targeted Management Methodology and Its Practical Application for the Sustained and Environment Development of Agro-Industrial Complex. Journal of Environmental Management and Tourism, 13(3), 769. doi:10.14505/jemt.v13.3(59).16.

Park, C., Jang, E. S., & Kim, Y. M. (2023). The temperature effect on the production of liquid and solid fuel via wood pellet torrefaction. Korean Journal of Chemical Engineering, 40(6), 1373–1379. doi:10.1007/s11814-022-1305-y.

Punhagui, K. R. G., & John, V. M. (2022). Carbon dioxide emissions, embodied energy, material use efficiency of lumber manufactured from planted forest in Brazil. Journal of Building Engineering, 52, 104349. doi:10.1016/j.jobe.2022.104349.

Zambrano-Monserrate, M. A. (2024). Clean energy production index and CO2 emissions in OECD countries. Science of the Total Environment, 907, 167852. doi:10.1016/j.scitotenv.2023.167852.

Kashuba, V. V., & Pimenova, T. V. (2015) Collection of normative and reference materials on the forestry complex: Textbook. Moscow State Forestry University Press, Moscow, Russia.

Shishelov, M. (2019). Evaluation of Production and Consumption of Wood Biofuel in the Komi Republic. Problems of Territory’s Development, 4 (102), 89-104. doi:10.15838/ptd.2019.4.102.5.

Pełka, G., Jach-Nocoń, M., Paprocki, M., Jachimowski, A., Luboń, W., Nocoń, A., Wygoda, M., Wyczesany, P., Pachytel, P., & Mirowski, T. (2023). Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers. Energies, 16(4), 1695. doi:10.3390/en16041695.

Kunitskaya, O. A., Makuev, V. A., Storodubtseva, T. N., Kalita, O. N., Mikhailenko, E. V., & Zadrauskaite N. O. (2022). Optimization of the Production of Fuel Briquettes from Chopped Wood. Systems. Methods. Technologies, 3(55), 85–91. doi:10.18324/2077-5415-2022-3-85-91.

Kozhevnikov, S., & Lebedeva, M. (2019). Problems of Transition to Green Economy in the Region (Based on Materials of the European North of Russia). Problems of Territory’s Development, 4 (102), 72-88. doi:10.15838/ptd.2019.4.102.4.

Sergeev, A. G. (2020). Study of the working process of the SB-2 dryer of DOZA-AGRO LLC as part of the fuel pellet production lines. Forestry Journal, 10(3 (39)), 134-144. (In Russian).

Fedorenchik, A. S., Lednitskiy, A. V., Kozhukhov, N. I., & Nikishov, V. D. (2010). Biofuel from Wood Raw Materials. MGUL Press, Moscow, Russia.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-03-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Evgeniy V. Kostyrin, Anna E. Machina