Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height Configuration
Abstract
Doi: 10.28991/ESJ-2024-08-03-01
Full Text: PDF
Keywords
References
Na, X., Kang, H., Wang, T., & Wang, Y. (2018). Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 143, 257–262. doi:10.1016/j.applthermaleng.2018.07.080.
Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X. (2019). Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. doi:10.1016/j.applthermaleng.2019.114183.
Zhong, G., Zhang, G., Yang, X., Li, X., Wang, Z., Yang, C., Yang, C., & Gao, G. (2017). Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module. Applied Thermal Engineering, 127, 176–183. doi:10.1016/j.applthermaleng.2017.08.022.
Wang, Y., Dan, D., Zhang, Y., Qian, Y., Panchal, S., Fowler, M., Li, W., Tran, M. K., & Xie, Y. (2022). A novel heat dissipation structure based on flat heat pipe for battery thermal management system. International Journal of Energy Research, 46(11), 15961–15980. doi:10.1002/er.8294.
Boonma, K., Patimaporntap, N., Mbulu, H., Trinuruk, P., Ruangjirakit, K., Laoonual, Y., & Wongwises, S. (2022). A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries. Energies, 15(22), 8534. doi:10.3390/en15228534.
Wang, C., Zhang, G., Meng, L., Li, X., Situ, W., Lv, Y., & Rao, M. (2017). Liquid cooling based on thermal silica plate for battery thermal management system. International Journal of Energy Research, 41(15), 2468–2479. doi:10.1002/er.3801.
Panchal, S., Khasow, R., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering, 122, 80–90. doi:10.1016/j.applthermaleng.2017.05.010.
Rao, Z., Qian, Z., Kuang, Y., & Li, Y. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514–1522. doi:10.1016/j.applthermaleng.2017.06.059.
Jilte, R. D., Kumar, R., Ahmadi, M. H., & Chen, L. (2019). Battery thermal management system employing phase change material with cell-to-cell air cooling. Applied Thermal Engineering, 161, 114199. doi:10.1016/j.applthermaleng.2019.114199.
Bais, A. R., Subhedhar, D. G., Joshi, N. C., & Panchal, S. (2022). Numerical investigation on thermal management system for lithium ion battery using phase change material. Materials Today: Proceedings, 66(4), 1726–1733. doi:10.1016/j.matpr.2022.05.269.
Akinlabi, A. A. H., & Solyali, D. (2020). Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 125, 109815. doi:10.1016/j.rser.2020.109815.
Erb, D. C., Kumar, S., Carlson, E., Ehrenberg, I. M., & Sarma, S. E. (2017). Analytical methods for determining the effects of lithium-ion cell size in aligned air-cooled battery packs. Journal of Energy Storage, 10, 39–47. doi:10.1016/j.est.2016.12.003.
Chen, K., Wu, W., Yuan, F., Chen, L., & Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 167, 781–790. doi:10.1016/j.energy.2018.11.011.
Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., Gandoman, F. H., Berecibar, M., & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. doi:10.1016/j.applthermaleng.2020.115280.
Li, X., He, F., Zhang, G., Huang, Q., & Zhou, D. (2019). Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. Applied Thermal Engineering, 146, 866–880. doi:10.1016/j.applthermaleng.2018.10.061.
Jiaqiang, E., Yue, M., Chen, J., Zhu, H., Deng, Y., Zhu, Y., Zhang, F., Wen, M., Zhang, B., & Kang, S. (2018). Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering, 144, 231–241. doi:10.1016/j.applthermaleng.2018.08.064.
Wang, M., Teng, S., Xi, H., & Li, Y. (2021). Cooling performance optimization of air-cooled battery thermal management system. Applied Thermal Engineering, 195, 117242. doi:10.1016/j.applthermaleng.2021.117242.
Hong, S., Zhang, X., Chen, K., & Wang, S. (2018). Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204–1212. doi:10.1016/j.ijheatmasstransfer.2017.09.092.
Shahid, S., & Agelin-Chaab, M. (2018). Development and analysis of a technique to improve air-cooling and temperature uniformity in a battery pack for cylindrical batteries. Thermal Science and Engineering Progress, 5, 351–363. doi:10.1016/j.tsep.2018.01.003.
Zhang, F., Liu, P., He, Y., & Li, S. (2022). Cooling performance optimization of air-cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle. Journal of Energy Storage, 52(A). doi:10.1016/j.est.2022.104678.
Wang, T., Tseng, K. J., & Zhao, J. (2015). Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Applied Thermal Engineering, 90, 521–529. doi:10.1016/j.applthermaleng.2015.07.033.
Chen, K., Wang, S., Song, M., & Chen, L. (2017). Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy. Applied Thermal Engineering, 123, 177–186. doi:10.1016/j.applthermaleng.2017.05.060.
Li, M., Liu, Y., Wang, X., & Zhang, J. (2019). Modeling and optimization of an enhanced battery thermal management system in electric vehicles. Frontiers of Mechanical Engineering, 14(1), 65–75. doi:10.1007/s11465-018-0520-z.
Chen, K., Chen, Y., She, Y., Song, M., Wang, S., & Chen, L. (2020). Construction of effective symmetrical air-cooled system for battery thermal management. Applied Thermal Engineering, 166, 114679. doi:10.1016/j.applthermaleng.2019.114679.
Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., & Yang, S. (2019). Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 155, 96–109. doi:10.1016/j.applthermaleng.2019.03.157.
Peng, X., Cui, X., Liao, X., & Garg, A. (2020). A thermal investigation and optimization of an air-cooled lithium-ion battery pack. Energies, 13(11), 2956. doi:10.3390/en13112956.
Chen, K., Li, Z., Chen, Y., Long, S., Hou, J., Song, M., & Wang, S. (2017). Design of parallel air-cooled battery thermal management system through numerical study. Energies, 10(10), 1677. doi:10.3390/en10101677.
Oyewola, O. M., Ismail, O. S., & Awonusi, A. A. (2022). Examination of Channel Angles Influence on the Cooling Performance of Air-cooled Thermal Management System of Li-Ion Battery. International Review of Mechanical Engineering, 16(4), 172–179. doi:10.15866/ireme.v16i4.22239.
Xie, J., Ge, Z., Zang, M., & Wang, S. (2017). Structural optimization of lithium-ion battery pack with forced air-cooling system. Applied Thermal Engineering, 126, 583–593. doi:10.1016/j.applthermaleng.2017.07.143.
Kharmale, S. B., Sathe, P. S., & Kolekar, Y. A. (2023). Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature. Civil Engineering Journal, 9(7), 1737-1752. doi:10.28991/CEJ-2023-09-07-013.
Wang, M., Hung, T. C., & Xi, H. (2021). Numerical study on performance enhancement of the air-cooled battery thermal management system by adding parallel plates. Energies, 14(11), 3096. doi:10.3390/en14113096.
Mba, E. J., Okeke, F. O., Ezema, E. C., Oforji, P. I., & Ozigbo, C. A. (2023). Post occupancy evaluation of ventilation coefficient desired for thermal comfort in educational facilities. Journal of Human, Earth, and Future, 4(1), 88-102. doi:10.28991/HEF-2023-04-01-07.
Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2022). Performance Improvement of Air-cooled Battery Thermal Management System using Sink of Different Pin-Fin Shapes. Emerging Science Journal, 6(4), 851–865. doi:10.28991/ESJ-2022-06-04-013.
Mohammadian, S. K., & Zhang, Y. (2015). Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. Journal of Power Sources, 273, 431–439. doi:10.1016/j.jpowsour.2014.09.110.
Wang, N., Li, C., Li, W., Huang, M., & Qi, D. (2021). Effect analysis on performance enhancement of a novel air-cooling battery thermal management system with spoilers. Applied Thermal Engineering, 192, 116932. doi:10.1016/j.applthermaleng.2021.116932.
Zhang, F., Lin, A., Wang, P., & Liu, P. (2021). Optimization design of a parallel air-cooled battery thermal management system with spoilers. Applied Thermal Engineering, 182, 116062. doi:10.1016/j.applthermaleng.2020.116062.
Mousavi, S., Siavashi, M., & Zadehkabir, A. (2021). A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates. Applied Thermal Engineering, 197, 117398. doi:10.1016/j.applthermaleng.2021.117398.
Yang, H., Li, M., Wang, Z., & Ma, B. (2023). A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management. Energy, 263, 10 1016. doi:10.1016/j.energy.2022.126026.
Zare, P., Perera, N., Lahr, J., & Hasan, R. (2024). A novel thermal management system for cylindrical lithium-ion batteries using internal-external fin-enhanced phase change material. Applied Thermal Engineering, 238, 121985. doi:10.1016/j.applthermaleng.2023.121985.
Khan, A., Ali, M., Yaqub, S., Khalid, H. A., Khan, R. R. U., Mushtaq, K., Nazir, H., & Said, Z. (2024). Hybrid thermal management of Li-ion battery pack: An experimental study with eutectic PCM-embedded heat transfer fluid. Journal of Energy Storage, 77, 109929. doi:10.1016/j.est.2023.109929.
Alzwayi, A., & Paul, M. C. (2024). Heat transfer enhancement of a lithium-ion battery cell using vertical and spiral cooling fins. Thermal Science and Engineering Progress, 47, 102304. doi:10.1016/j.tsep.2023.102304.
Chen, K., Zhang, Z., Wu, B., Song, M., & Wu, X. (2024). An air-cooled system with a control strategy for efficient battery thermal management. Applied Thermal Engineering, 236, 121578. doi:10.1016/j.applthermaleng.2023.121578.
Fini, A. S., & Gharehghani, A. (2024). Experimental investigation of pressure effect on the PCM performance in Li-ion battery thermal management system. Journal of Energy Storage, 79, 110273. doi:10.1016/j.est.2023.110273.
Shen, X., Cai, T., He, C., Yang, Y., & Chen, M. (2023). Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58. doi:10.1016/j.est.2022.106356.
Oyewola, O. M., & Idowu, E. T. (2024). Effects of step-like plenum, flow pattern and inlet flow regime on thermal management system. Applied Thermal Engineering, 243, 122637. doi:10.1016/j.applthermaleng.2024.122637.
Tian, Z., Huang, Z., Zhou, Y., Cao, Z., & Gao, W. (2024). Design and experimental study on wave-type microchannel cooling plates for marine large-capacity battery thermal management. Applied Thermal Engineering, 236, 121571. doi:10.1016/j.applthermaleng.2023.121571.
Weragoda, D. M., Tian, G., Cai, Q., Zhang, T., Hing Lo, K., & Gao, Y. (2024). Conceptualization of a novel battery thermal management system based on capillary-driven evaporative cooling. Thermal Science and Engineering Progress, 47, 102320. doi:10.1016/j.tsep.2023.102320.
Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2023). Design optimization of Air-Cooled Li-ion battery thermal management system with Step-like divergence plenum for electric vehicles. Alexandria Engineering Journal, 71, 631–644. doi:10.1016/j.aej.2023.03.089.
Li, W., Xiao, M., Peng, X., Garg, A., & Gao, L. (2019). A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs. Applied Thermal Engineering, 147, 90–100. doi:10.1016/j.applthermaleng.2018.10.060.
DOI: 10.28991/ESJ-2024-08-03-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 OLANREWAJU Miracle OYEWOLA, Olawale S. Ismail, Adetokunbo A. Awonusi