Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height Configuration

Olanrewaju M. Oyewola, Adetokunbo A. Awonusi, Olawale S. Ismail


Several studies on air-cooled battery thermal management systems (BTMSs) have shown that improvement can be achieved through redesign of the BTMSs. Recent studies have achieved improvements in managing the temperature in the system, but mostly with an increase in pressure drop. It is therefore imperative to carry out an extended study or redesign of the existing designs to overcome these challenges. In this work, a standard Z-type BTMS, which has a flat divergence plenum, was redesigned to have a step-like divergence plenum of variable step height. Computational Fluid Dynamics (CFD) approach was adopted to investigate the thermal and airflow performance of the BTMSs. The CFD methodology was validated by comparing its results with experimental data in the literature. Various step height configurations were considered for 3-step and 4-step models. Findings from the result revealed that the variable step height design enhances the cooling performance of the battery pack. For instance, a 3-step model with step heights of 3, 6, and 6 mm offered the least pressure drop and maximum temperature difference, and when compared with the model with a constant step height of 5, 5, and 5 mm, it yielded reductions of 3.4% and 21.6%, respectively. By increasing the inlet airflow velocity, the 4-step cases generally improved. The best cooling improvement was seen in case 26 at velocities over 3.7 m/s for maximum temperature and velocities over 4.8 m/s for maximum temperature difference.


Doi: 10.28991/ESJ-2024-08-03-01

Full Text: PDF


Step-Like Plenum; Step Height; Optimization; BTMS.


Na, X., Kang, H., Wang, T., & Wang, Y. (2018). Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 143, 257–262. doi:10.1016/j.applthermaleng.2018.07.080.

Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X. (2019). Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. doi:10.1016/j.applthermaleng.2019.114183.

Zhong, G., Zhang, G., Yang, X., Li, X., Wang, Z., Yang, C., Yang, C., & Gao, G. (2017). Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module. Applied Thermal Engineering, 127, 176–183. doi:10.1016/j.applthermaleng.2017.08.022.

Wang, Y., Dan, D., Zhang, Y., Qian, Y., Panchal, S., Fowler, M., Li, W., Tran, M. K., & Xie, Y. (2022). A novel heat dissipation structure based on flat heat pipe for battery thermal management system. International Journal of Energy Research, 46(11), 15961–15980. doi:10.1002/er.8294.

Boonma, K., Patimaporntap, N., Mbulu, H., Trinuruk, P., Ruangjirakit, K., Laoonual, Y., & Wongwises, S. (2022). A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries. Energies, 15(22), 8534. doi:10.3390/en15228534.

Wang, C., Zhang, G., Meng, L., Li, X., Situ, W., Lv, Y., & Rao, M. (2017). Liquid cooling based on thermal silica plate for battery thermal management system. International Journal of Energy Research, 41(15), 2468–2479. doi:10.1002/er.3801.

Panchal, S., Khasow, R., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering, 122, 80–90. doi:10.1016/j.applthermaleng.2017.05.010.

Rao, Z., Qian, Z., Kuang, Y., & Li, Y. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514–1522. doi:10.1016/j.applthermaleng.2017.06.059.

Jilte, R. D., Kumar, R., Ahmadi, M. H., & Chen, L. (2019). Battery thermal management system employing phase change material with cell-to-cell air cooling. Applied Thermal Engineering, 161, 114199. doi:10.1016/j.applthermaleng.2019.114199.

Bais, A. R., Subhedhar, D. G., Joshi, N. C., & Panchal, S. (2022). Numerical investigation on thermal management system for lithium ion battery using phase change material. Materials Today: Proceedings, 66(4), 1726–1733. doi:10.1016/j.matpr.2022.05.269.

Akinlabi, A. A. H., & Solyali, D. (2020). Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 125, 109815. doi:10.1016/j.rser.2020.109815.

Erb, D. C., Kumar, S., Carlson, E., Ehrenberg, I. M., & Sarma, S. E. (2017). Analytical methods for determining the effects of lithium-ion cell size in aligned air-cooled battery packs. Journal of Energy Storage, 10, 39–47. doi:10.1016/j.est.2016.12.003.

Chen, K., Wu, W., Yuan, F., Chen, L., & Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 167, 781–790. doi:10.1016/

Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., Gandoman, F. H., Berecibar, M., & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. doi:10.1016/j.applthermaleng.2020.115280.

Li, X., He, F., Zhang, G., Huang, Q., & Zhou, D. (2019). Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. Applied Thermal Engineering, 146, 866–880. doi:10.1016/j.applthermaleng.2018.10.061.

Jiaqiang, E., Yue, M., Chen, J., Zhu, H., Deng, Y., Zhu, Y., Zhang, F., Wen, M., Zhang, B., & Kang, S. (2018). Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering, 144, 231–241. doi:10.1016/j.applthermaleng.2018.08.064.

Wang, M., Teng, S., Xi, H., & Li, Y. (2021). Cooling performance optimization of air-cooled battery thermal management system. Applied Thermal Engineering, 195, 117242. doi:10.1016/j.applthermaleng.2021.117242.

Hong, S., Zhang, X., Chen, K., & Wang, S. (2018). Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204–1212. doi:10.1016/j.ijheatmasstransfer.2017.09.092.

Shahid, S., & Agelin-Chaab, M. (2018). Development and analysis of a technique to improve air-cooling and temperature uniformity in a battery pack for cylindrical batteries. Thermal Science and Engineering Progress, 5, 351–363. doi:10.1016/j.tsep.2018.01.003.

Zhang, F., Liu, P., He, Y., & Li, S. (2022). Cooling performance optimization of air-cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle. Journal of Energy Storage, 52(A). doi:10.1016/j.est.2022.104678.

Wang, T., Tseng, K. J., & Zhao, J. (2015). Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Applied Thermal Engineering, 90, 521–529. doi:10.1016/j.applthermaleng.2015.07.033.

Chen, K., Wang, S., Song, M., & Chen, L. (2017). Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy. Applied Thermal Engineering, 123, 177–186. doi:10.1016/j.applthermaleng.2017.05.060.

Li, M., Liu, Y., Wang, X., & Zhang, J. (2019). Modeling and optimization of an enhanced battery thermal management system in electric vehicles. Frontiers of Mechanical Engineering, 14(1), 65–75. doi:10.1007/s11465-018-0520-z.

Chen, K., Chen, Y., She, Y., Song, M., Wang, S., & Chen, L. (2020). Construction of effective symmetrical air-cooled system for battery thermal management. Applied Thermal Engineering, 166, 114679. doi:10.1016/j.applthermaleng.2019.114679.

Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., & Yang, S. (2019). Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 155, 96–109. doi:10.1016/j.applthermaleng.2019.03.157.

Peng, X., Cui, X., Liao, X., & Garg, A. (2020). A thermal investigation and optimization of an air-cooled lithium-ion battery pack. Energies, 13(11), 2956. doi:10.3390/en13112956.

Chen, K., Li, Z., Chen, Y., Long, S., Hou, J., Song, M., & Wang, S. (2017). Design of parallel air-cooled battery thermal management system through numerical study. Energies, 10(10), 1677. doi:10.3390/en10101677.

Oyewola, O. M., Ismail, O. S., & Awonusi, A. A. (2022). Examination of Channel Angles Influence on the Cooling Performance of Air-cooled Thermal Management System of Li-Ion Battery. International Review of Mechanical Engineering, 16(4), 172–179. doi:10.15866/ireme.v16i4.22239.

Xie, J., Ge, Z., Zang, M., & Wang, S. (2017). Structural optimization of lithium-ion battery pack with forced air-cooling system. Applied Thermal Engineering, 126, 583–593. doi:10.1016/j.applthermaleng.2017.07.143.

Kharmale, S. B., Sathe, P. S., & Kolekar, Y. A. (2023). Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature. Civil Engineering Journal, 9(7), 1737-1752. doi:10.28991/CEJ-2023-09-07-013.

Wang, M., Hung, T. C., & Xi, H. (2021). Numerical study on performance enhancement of the air-cooled battery thermal management system by adding parallel plates. Energies, 14(11), 3096. doi:10.3390/en14113096.

Mba, E. J., Okeke, F. O., Ezema, E. C., Oforji, P. I., & Ozigbo, C. A. (2023). Post occupancy evaluation of ventilation coefficient desired for thermal comfort in educational facilities. Journal of Human, Earth, and Future, 4(1), 88-102. doi:10.28991/HEF-2023-04-01-07.

Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2022). Performance Improvement of Air-cooled Battery Thermal Management System using Sink of Different Pin-Fin Shapes. Emerging Science Journal, 6(4), 851–865. doi:10.28991/ESJ-2022-06-04-013.

Mohammadian, S. K., & Zhang, Y. (2015). Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. Journal of Power Sources, 273, 431–439. doi:10.1016/j.jpowsour.2014.09.110.

Wang, N., Li, C., Li, W., Huang, M., & Qi, D. (2021). Effect analysis on performance enhancement of a novel air-cooling battery thermal management system with spoilers. Applied Thermal Engineering, 192, 116932. doi:10.1016/j.applthermaleng.2021.116932.

Zhang, F., Lin, A., Wang, P., & Liu, P. (2021). Optimization design of a parallel air-cooled battery thermal management system with spoilers. Applied Thermal Engineering, 182, 116062. doi:10.1016/j.applthermaleng.2020.116062.

Mousavi, S., Siavashi, M., & Zadehkabir, A. (2021). A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates. Applied Thermal Engineering, 197, 117398. doi:10.1016/j.applthermaleng.2021.117398.

Yang, H., Li, M., Wang, Z., & Ma, B. (2023). A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management. Energy, 263, 10 1016. doi:10.1016/

Zare, P., Perera, N., Lahr, J., & Hasan, R. (2024). A novel thermal management system for cylindrical lithium-ion batteries using internal-external fin-enhanced phase change material. Applied Thermal Engineering, 238, 121985. doi:10.1016/j.applthermaleng.2023.121985.

Khan, A., Ali, M., Yaqub, S., Khalid, H. A., Khan, R. R. U., Mushtaq, K., Nazir, H., & Said, Z. (2024). Hybrid thermal management of Li-ion battery pack: An experimental study with eutectic PCM-embedded heat transfer fluid. Journal of Energy Storage, 77, 109929. doi:10.1016/j.est.2023.109929.

Alzwayi, A., & Paul, M. C. (2024). Heat transfer enhancement of a lithium-ion battery cell using vertical and spiral cooling fins. Thermal Science and Engineering Progress, 47, 102304. doi:10.1016/j.tsep.2023.102304.

Chen, K., Zhang, Z., Wu, B., Song, M., & Wu, X. (2024). An air-cooled system with a control strategy for efficient battery thermal management. Applied Thermal Engineering, 236, 121578. doi:10.1016/j.applthermaleng.2023.121578.

Fini, A. S., & Gharehghani, A. (2024). Experimental investigation of pressure effect on the PCM performance in Li-ion battery thermal management system. Journal of Energy Storage, 79, 110273. doi:10.1016/j.est.2023.110273.

Shen, X., Cai, T., He, C., Yang, Y., & Chen, M. (2023). Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58. doi:10.1016/j.est.2022.106356.

Oyewola, O. M., & Idowu, E. T. (2024). Effects of step-like plenum, flow pattern and inlet flow regime on thermal management system. Applied Thermal Engineering, 243, 122637. doi:10.1016/j.applthermaleng.2024.122637.

Tian, Z., Huang, Z., Zhou, Y., Cao, Z., & Gao, W. (2024). Design and experimental study on wave-type microchannel cooling plates for marine large-capacity battery thermal management. Applied Thermal Engineering, 236, 121571. doi:10.1016/j.applthermaleng.2023.121571.

Weragoda, D. M., Tian, G., Cai, Q., Zhang, T., Hing Lo, K., & Gao, Y. (2024). Conceptualization of a novel battery thermal management system based on capillary-driven evaporative cooling. Thermal Science and Engineering Progress, 47, 102320. doi:10.1016/j.tsep.2023.102320.

Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2023). Design optimization of Air-Cooled Li-ion battery thermal management system with Step-like divergence plenum for electric vehicles. Alexandria Engineering Journal, 71, 631–644. doi:10.1016/j.aej.2023.03.089.

Li, W., Xiao, M., Peng, X., Garg, A., & Gao, L. (2019). A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs. Applied Thermal Engineering, 147, 90–100. doi:10.1016/j.applthermaleng.2018.10.060.

Full Text: PDF

DOI: 10.28991/ESJ-2024-08-03-01


  • There are currently no refbacks.

Copyright (c) 2024 OLANREWAJU Miracle OYEWOLA, Olawale S. Ismail, Adetokunbo A. Awonusi