Using Semicircular Sampling to Increase Sea Water/Ice Discrimination Altitude

Alexey Nekrasov, Alena Khachaturian, Colin Fidge


The rapid development of aircraft and unmanned aerial vehicles (UAV) increases their use, including in polar areas, which are characterized by their remoteness and rather harsh conditions. The dominant trends in airborne radar development are expanding their functionality and increasing the altitude of their applicability. Our study focuses on the functionality enhancement of airborne high-altitude conical scanning radars currently used for circular clouds and precipitation observations as well as for sea wind measurements. Recently, we showed how a semicircular observation scheme, instead of a circular one, can double the maximum applicable altitude of sea wind measurements made with such radars. Here we apply this approach to show how an airborne high-altitude conical scanning radar’s functionality can also be expanded for sea water/ice discrimination within a semicircular observation scheme, again doubling the maximum discrimination altitude compared to circular observations. The discrimination is performed in scatterometer mode using the minimum statistical distance of the measured normalized radar cross sections (NRCSs) to the geophysical model functions (GMFs) of the sea water and ice underlying surfaces. However, as no sea ice GMF is available for the considered horizontal transmit and receive polarization at the Ku band, we instead used a substitute sea ice GMF having the same azimuth isotropic property setting for its NRCSs as the averaged value of the measured azimuth NRCSs within the semicircular observations scheme. Our analysis found that incidence angles of 30°, 45°, and 60° are well suited to our sea water/ice discrimination method, and that incidence angles higher than 30° are preferable as they provide a higher difference in the statistical distance of the measured NRCSs to the sea ice and water GMFs, whereas an incidence angle of 30° provides the highest applicable altitude for sea water/ice discrimination and wind retrieval. We also demonstrated the ability of the sea water/ice discrimination procedure’s implementation for any airborne wind scatterometer or multimode radar operated in scatterometer mode over freezing seas to avoid entirely erroneous sea wind measurement results when a sea ice surface is observed. The obtained results can also be used for enhancing aircraft and UAV radars and for developing new remote sensing systems.


Doi: 10.28991/ESJ-2024-08-02-07

Full Text: PDF


UAV; Remote Sensing; Airborne Scatterometer; Radar Backscatter; Sea Water/Ice Discrimination.


Wikipedia. (2024). Measurement of sea ice. Available online: (accessed on March 2024).

Njoku, E. G. (2014). Encyclopedia of Remote Sensing. Springer, New York, United States. doi:10.1007/978-0-387-36699-9.

Johannessen, O. M., Alexandrov, V., Frolov, I. Y., Sandven, S., Pettersson, L. H., Bobylev, L. P., Kloster, K., Smirnov, V. G., Mironov, Y. U., & Babich, N. G. (2007). Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications. Springer, Berlin/Heidelberg, Germany. doi:10.1007/978-3-540-48840-8.

Sandven, S., Spreen, G., Heygster, G., Girard-Ardhuin, F., Farrell, S. L., Dierking, W., & Allard, R. A. (2023). Sea Ice Remote Sensing—Recent Developments in Methods and Climate Data Sets. Surveys in Geophysics, 44(5), 1653–1689. doi:10.1007/s10712-023-09781-0.

Gabarró, C., Hughes, N., Wilkinson, J., Bertino, L., Bracher, A., Diehl, T., Dierking, W., Gonzalez-Gambau, V., Lavergne, T., Madurell, T., Malnes, E., & Wagner, P. M. (2023). Improving satellite-based monitoring of the Polar Regions: Identification of research and capacity gaps. Frontiers in Remote Sensing, 4. doi:10.3389/frsen.2023.952091.

Yang, Z., Yu, X., Dedman, S., Rosso, M., Zhu, J., Yang, J., Xia, Y., Tian, Y., Zhang, G., & Wang, J. (2022). UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Science of the Total Environment, 838, 155939. doi:10.1016/j.scitotenv.2022.155939.

Yuan, S., Li, Y., Bao, F., Xu, H., Yang, Y., Yan, Q., Zhong, S., Yin, H., Xu, J., Huang, Z., & Lin, J. (2023). Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects. Science of the Total Environment, 858, 159741. doi:10.1016/j.scitotenv.2022.159741.

Håheim-Saers, N. (2022). Arctic UAS study. Arctic threats to safe design of Unmanned Aerial Systems. Report No. 2-2022, NORCE Energy & Technology, Bergen, Norway.

Mersmann, K. (2022). NASA is Helping Fly Drones in the Arctic. Here’s what that Means for Sea Ice and Sea Level Change. The National Aeronautics and Space Administration (NASA), Washington, United States. Available online: (accessed on March 2024).

Li, L., Heymsfield, G., Carswell, J., Schaubert, D. H., McLinden, M. L., Creticos, J., Perrine, M., Coon, M., Cervantes, J. I., Vega, M., Guimond, S., Tian, L., & Emory, A. (2016). The NASA High-Altitude Imaging Wind and Rain Airborne Profiler. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 298–310. doi:10.1109/TGRS.2015.2456501.

NASA. (2023). High-Altitude Radar. Goddard Space Flight Center. The National Aeronautics and Space Administration (NASA), Washington, United States. Available online: (accessed on March 2024).

Guimond, S. R., Tian, L., Heymsfield, G. M., & Frasier, S. J. (2014). Wind retrieval algorithms for the IWRAP and HIWRAP airborne doppler radars with applications to hurricanes. Journal of Atmospheric and Oceanic Technology, 31(6), 1189–1215. doi:10.1175/JTECH-D-13-00140.1.

Moore, R. K. (1985). Radar Sensing of the Ocean. IEEE Journal of Oceanic Engineering, 10(2), 84–113. doi:10.1109/JOE.1985.1145093.

Masuko, H., Okamoto, K., Shimada, M., & Niwa, S. (1986). Measurement of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers. Journal of Geophysical Research: Oceans, 91(C11), 13065–13083. doi:10.1029/jc091ic11p13065.

Carswell, J. R., Carson, S. C., McIntosh, R. E., Li, F. K., Neumann, G., McLaughlin, D. J., Wilkerson, J. C., Black, P. G., & Nghiem, S. V. (1994). Airborne scatterometers: investigating ocean backscatter under low- and high-wind conditions. Proceedings of the IEEE, 82(12), 1835–1860.

Nekrasov, A., Khachaturian, A., Abramov, E., Popov, D., Markelov, O., Obukhovets, V., Veremyev, V., & Bogachev, M. (2018). Optimization of airborne antenna geometry for ocean surface scatterometric measurements. Remote Sensing, 10(10), 1501. doi:10.3390/rs10101501.

Nekrasov, A., & Khachaturian, A. (2021). Towards the Sea Wind Measurement with the Airborne Scatterometer Having the Rotating-Beam Antenna Mounted over Fuselage. Remote Sensing, 13(24), 5165. doi:10.3390/rs13245165.

Nekrasov, A., Khachaturian, A., & Vorobev, E. (2022). Optimization of the NRCS Sampling at the Sea Wind Retrieval by the Airborne Rotating‐Beam Scatterometer Mounted under Fuselage. Sensors, 22(11), 4016. doi:10.3390/s22114016.

Nekrasov, A., de Wit, J. J. M., & Hoogeboom, P. (2004). FM-CW millimeter wave demonstrator system as a sensor of the sea surface wind vector. IEICE Electronics Express, 1(6), 137–143. doi:10.1587/elex.1.137.

Nekrasov, A. (2010). Airborne Doppler navigation system application for measurement of the water surface backscattering signature. ISPRS TC VII Symposium—100 Years ISPRS, 5–7 July, 2010, Vienna, Austria.

Nekrasov, A. (2005). Measuring the sea surface wind vector by the Doppler navigation system of flying apparatus having the track-stabilized four-beam antenna. 17th Asia Pacific Microwave Conference (APMC), Suzhou, China, 4–7 December, 2005. doi:10.1109/APMC.2005.16063433.

Nekrasov, A., & Dell’Acqua, F. (2016). Airborne Weather Radar: A theoretical approach for water-surface backscattering and wind measurements. IEEE Geoscience and Remote Sensing Magazine, 4(4), 38–50. doi:10.1109/MGRS.2016.2613840.

Nekrasov, A., & Veremyev, V. (2016). Airborne Weather Radar Concept for Measuring Water Surface Backscattering Signature and Sea Wind at Circular Flight. Naše More, 63(4), 278–282. doi:10.17818/nm/2016/4.5.

Wikipedia. (2024). Flight altitude record. Available online: (accessed on March 2024).

Holland Michel, A. (2015). Bard College Center for the Study of the Drone, Bard College, Red Hook, United States. Available online: (accessed on March 2024).

Nekrasov, A., Khachaturian, A., & Fidge, C. (2022). Using Semicircular Sampling to Increase Sea-Wind Retrieval Altitude with a High-Altitude UAV Scatterometer. Drones, 6(9), 223. doi:10.3390/drones6090223.

Nekrasov, A., Khachaturian, A., & Fidge, C. (2023). Optimization of Airborne Scatterometer NRCS Semicircular Sampling for Sea Wind Retrieval. Remote Sensing, 15(6), 1613. doi:10.3390/rs15061613.

Nekrasov, A., Khachaturian, A., Abramov, E., Kurdel, P., Gamcova, M., Gamec, J., & Bogachev, M. (2020). On Sea Ice/Water Discrimination by Airborne Weather Radar. IEEE Access, 8, 120916–120922. doi:10.1109/ACCESS.2020.3006617.

Nekrasov, A., Khachaturian, A., Abramov, E., Markelov, O., & Bogachev, M. (2019). On sea ice measurement by a C-band scatterometer at VV polarization: Methodology optimization based on computer simulations. Remote Sensing, 11(21), 2518. doi:10.3390/rs11212518.

Nekrasov, A., Khachaturian, A., Labun, J., Kurdel, P., & Bogachev, M. (2020). Towards the Sea Ice and Wind Measurement by a C-Band Scatterometer at Dual VV/HH Polarization: A Prospective Appraisal. Remote Sensing, 12(20), 3382. doi:10.3390/rs12203382.

Nekrasov, A., Khachaturian, A., Veremyev, V., & Bogachev, M. (2016). Sea surface wind measurement by airborne weather radar scanning in a wide-size sector. Atmosphere, 7(5), 72. doi:10.3390/atmos7050072.

Spencer, M. W. (1997). The NASA scatterometer (NSCAT) mission. Backscatter, 8(4), 18-24.

Hans, P. (1987). Design and analysis of satellite-borne microwave sensor systems for wind field measurement (scatterometer) over the sea and comparison of the measurement methods in time and frequency levels. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany. (In German).

Nekrassov, A. (1999). Sea surface wind vector measurement by airborne scatterometer having wide-beam antenna in horizontal plane. International Geoscience and Remote Sensing Symposium IGARSS’99, 28 June – 02 July 1999, Hamburg, Germany. 1001–1003. doi:10.1109/IGARSS.1999.774512.

Nekrassov, A. (2002). On airborne measurement of the sea surface wind vector by a scatterometer (altimeter) with a nadir-looking wide-beam antenna. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2111–2116. doi:10.1109/TGRS.2002.803621.

Nekrasov, A., Khachaturian, A., Veremyev, V., & Bogachev, M. (2017). Doppler navigation system with a non-stabilized antenna as a sea-surface wind sensor. Sensors, 17(6), 1340. doi:10.3390/s17061340.

Ulaby, F., & Long, D. (2014). Microwave Radar and Radiometric Remote Sensing. Artech House, Norwood, United States. doi:10.3998/0472119356.

Belmonte Rivas, M., Verspeek, J., Verhoef, A., & Stoffelen, A. (2012). Bayesian Sea Ice Detection with the Advanced Scatterometer ASCAT. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2649–2657. doi:10.1109/tgrs.2011.2182356.

Otosaka, I., Rivas, M. B., & Stoffelen, A. (2018). Bayesian sea ice detection with the ERS scatterometer and sea ice backscatter model at C-band. IEEE Transactions on Geoscience and Remote Sensing, 56(4), 2248–2254. doi:10.1109/TGRS.2017.2777670.

Frey, K. E., Smith, L. C., & Alsdorf, D. E. (2003). Controls on Eurasian coastal sea ice formation, melt onset and decay from ERS scatterometry: Regional contrasts and effects of river influx. International Journal of Remote Sensing, 24(24), 5283–5315. doi:10.1080/0143116031000101684.

KNMI Projects. (2024). Globe Educatieprojecten: CMOD7. Royal Netherlands Meteorological Institute, De Bilt, Netherlands. Available online: (accessed on March 2024).

Otosaka, I., Rivas, M. B., & Stoffelen, A. (2019). Errata: Bayesian sea ice detection with the ERS scatterometer and sea ice backscatter model at C-band. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 10447-10447. doi:10.1109/TGRS.2019.2928720.

Alpers, W., Zhang, B., Mouche, A., Zeng, K., & Chan, P. W. (2016). Rain footprints on C-band synthetic aperture radar images of the ocean - Revisited. Remote Sensing of Environment, 187, 169–185. doi:10.1016/j.rse.2016.10.015.

Xu, X., Stoffelen, A., Ni, W., Portabella, M., & Rabaneda, A. (2023). Extreme Winds from Ku-Band and C-Band Wind Scatterometers. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, California, United States. doi:10.1109/igarss52108.2023.10281803.

Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1994). Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/cbo9780511628955.

Full Text: PDF

DOI: 10.28991/ESJ-2024-08-02-07


  • There are currently no refbacks.

Copyright (c) 2024 Alexey Nekrasov, Alena Khachaturian, Colin Fidge