Expression and Epitope Prediction of the Sirohydrochlorin Cobaltochelatase Isolated from a Local Strain of Mycobacterium Tuberculosis
Abstract
Doi: 10.28991/ESJ-2024-08-04-07
Full Text: PDF
Keywords
References
WHO. (2022). Global Tuberculosis Report 2022. World Health Organisation (WHO), Geneva, Switzerland. Available online: https://www.who.int/publications/i/item/9789240061729 (accessed on July 2024).
Gordon, S. V., & Parish, T. (2018). Microbe profile: Mycobacterium tuberculosis: Humanity’s deadly microbial foe. Microbiology (United Kingdom), 164(4), 437–439. doi:10.1099/mic.0.000601.
Sibuea, F., Hardhana, B., Widiantini, W. (2022). Indonesian Health Profile. Kementerian Kesehatan Republik Indonesia, Jakarta, Indonesia. Available online: https://www.kemkes.go.id/id/profil-kesehatan-indonesia-(accessed on July 2024) (In Indonesian).
Tornheim, J. A., & Dooley, K. E. (2017). Tuberculosis Associated with HIV Infection. Microbiology Spectrum, 5(1). doi:10.1128/microbiolspec.tnmi7-0028-2016.
Christof, C., Nußbaumer-Streit, B., & Gartlehner, G. (2020). WHO-Leitlinie: Prävention und Kontrolle von Tuberkulose-Infektionen. Das Gesundheitswesen, 82(11), 885–889. doi:10.1055/a-1241-4321. (In German).
Kuan, R., Muskat, K., Peters, B., & Lindestam Arlehamn, C. S. (2020). Is mapping the BCG vaccine-induced immune responses the key to improving the efficacy against tuberculosis? Journal of Internal Medicine, 288(6), 651–660. doi:10.1111/joim.13191.
Li, J., Zhao, A., Tang, J., Wang, G., Shi, Y., Zhan, L., & Qin, C. (2020). Tuberculosis vaccine development: from classic to clinical candidates. European Journal of Clinical Microbiology and Infectious Diseases, 39(8), 1405–1425. doi:10.1007/s10096-020-03843-6.
Wang, R., Fan, X., Jiang, Y., Li, G., Li, M., Zhao, X., Luan, X., Deng, Y., Chen, Z., Liu, H., & Wan, K. (2023). Immunogenicity and efficacy analyses of EPC002, ECA006, and EPCP009 protein subunit combinations as tuberculosis vaccine candidates. Vaccine, 41(26), 3836–3846. doi:10.1016/j.vaccine.2023.04.003.
Zhang, Y., Xu, J. C., Hu, Z. D., & Fan, X. Y. (2023). Advances in protein subunit vaccines against tuberculosis. Frontiers in Immunology, 14. doi:10.3389/fimmu.2023.1238586.
Naidu, A., Nayak, S. S., Lulu S, S., & Sundararajan, V. (2023). Advances in computational frameworks in the fight against TB: The way forward. Frontiers in Pharmacology, 14. doi:10.3389/fphar.2023.1152915.
Minias, A., Minias, P., Czubat, B., & Dziadek, J. (2018). Purifying selective pressure suggests the functionality of a vitamin B12 biosynthesis pathway in a global population of mycobacterium tuberculosis. Genome Biology and Evolution, 10(9), 2326–2337. doi:10.1093/gbe/evy153.
Modlin, S. J., Elghraoui, A., Gunasekaran, D., Zlotnicki, A. M., Dillon, N. A., Dhillon, N., Kuo, N., Robinhold, C., Chan, C. K., Baughn, A. D., & Valafar, F. (2021). Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. MSystems, 6(6). doi:10.1128/msystems.00673-21.
Kumar, A. (2008). Computational Annotation for Hypothetical Proteins of Mycobacterium Tuberculosis. Journal of Computer Science & Systems Biology, 01(01). doi:10.4172/jcsb.1000004.
Machtel, P., Bąkowska-Żywicka, K., & Żywicki, M. (2016). Emerging applications of riboswitches – from antibacterial targets to molecular tools. Journal of Applied Genetics, 57(4), 531–541. doi:10.1007/s13353-016-0341-x.
Ahmad, A., Agus, R., Massi, M. N., Handayani, I., & Karim, H. (2019). Cloning and characterization of Rv1980c gene encoding MPT64 Protein from Mycobacterium tuberculosis as a new candidate vaccine of tuberculosis. Journal of Physics: Conference Series, 1341(3), 032010. doi:10.1088/1742-6596/1341/3/032010.
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(134), 134. doi:10.1186/1471-2105-13-134.
Ahmad, A., Agus, R., Massi, M. N., Natzir, R., Madhyastha, R., Madhyastha, H. K., & Maruyama, M. (2018). Cloning and expression of MPT83 gene from Mycobacterium tuberculosis in E. coli BL21 as vaccine candidate of tuberculosis: A preliminary study. Journal of Genetic Engineering and Biotechnology, 16(2), 335–340. doi:10.1016/j.jgeb.2018.04.001.
Ahmad, A., Agus, R., Hidayah, N., Massi, M. N., Nurhasanah, A., & Karim, H. (2023). Cloning And Expression Of MPT83 Plus MPT64 Fusion Protein From Mycobacterium tuberculosis In Escherichia coli BL21 (DE3) Strain As Vaccine Candidate Of Tuberculosis. Rasayan Journal of Chemistry, 16(1), 297–306. doi:10.31788/RJC.2023.1618092.
Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. (3rd Ed.). Cold Spring Harbor Laboratory Press, New York, United States.
Promega. (2015). pGEM®-T and pGEM®-T Easy Vector Systems. Promega, Madison, United States. Available online: https://worldwide.promega.com/products/pcr/pcr-cloning/pgem-t-easy-vector-systems/?catNum=A1360 (accessed on June 2024).
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41(41), 95–98.
Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–214. doi:10.1089/10665270050081478.
Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. doi:10.1093/nar/25.17.3389.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. doi:10.1093/nar/gky427.
Fujishiro, T., Shimada, Y., Nakamura, R., & Ooi, M. (2019). Structure of sirohydrochlorin ferrochelatase SirB: The last of the structures of the class II chelatase family. Dalton Transactions, 48(18), 6083–6090. doi:10.1039/c8dt04727h.
Berman, H. M. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235.
Karimah, N., Sulfianti, A., & Nurhasanah, A. (2022). A bioinformatic approach towards designing a human papillomavirus vaccine based on L1 capsid protein sequence of HPV45. Indian Journal of Biochemistry and Biophysics, 59(9), 927–935. doi:10.56042/ijbb.v59i9.62010.
Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9. doi:10.1186/1471-2105-9-514.
Fleri, W. (2013) T Cell Epitopes - MHC Class I Binding Prediction Tools Description (IEDB), Durham, United Kingdom. Available online: https://help.iedb.org/hc/en-us/articles/114094151691-T-Cell-Epitopes-MHC-Class-I-Binding-Prediction-Tools-Description (accessed July 2024).
Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. doi:10.1093/nar/gkaa379.
Hoof, I., Peters, B., Sidney, J., Pedersen, L. E., Sette, A., Lund, O., Buus, S., & Nielsen, M. (2009). NetMHCpan, a method for MHC class i binding prediction beyond humans. Immunogenetics, 61(1), 1–13. doi:10.1007/s00251-008-0341-z.
Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., & Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154(3), 394–406. doi:10.1111/imm.12889.
Fleri, W. (2013) T Cell Epitopes - MHC Class II Binding Prediction Tools Description (IEDB), Durham, United Kingdom. Available online: https://help.iedb.org/hc/en-us/articles/114094151731-T-Cell-Epitopes-MHC-Class-II-Binding-Prediction-Tools-Description (accessed July 2024).
Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(4). doi:10.1186/1471-2105-8-4.
Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(153). doi:10.1186/1471-2105-7-153.
Sulfianti, A., Karimah, N., & Nurhasanah, A. (2023). In silico analysis of HLA-1 and HLA-2 recognition of a designed recombinant human papillomavirus vaccine based on L1 protein HPV subtype 45. Journal of Genetic Engineering and Biotechnology, 21(1), 167. doi:10.1186/s43141-023-00593-8.
Katoh, K., Rozewicki, J., & Yamada, K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. doi:10.1093/bib/bbx108.
Mariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722–2728. doi:10.1093/bioinformatics/btt473.
Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics, 36(6), 1765–1771. doi:10.1093/bioinformatics/btz828.
Cun, Y., Li, C., Shi, L., Sun, M., Dai, S., Sun, L., Shi, L., & Yao, Y. (2021). COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations. Human Vaccines and Immunotherapeutics, 17(4), 1097–1108. doi:10.1080/21645515.2020.1823777.
Minias, A., Gąsior, F., Brzostek, A., Jagielski, T., & Dziadek, J. (2021). Cobalamin is present in cells of non-tuberculous mycobacteria, but not in Mycobacterium tuberculosis. Scientific Reports, 11(1), 12267. doi:10.1038/s41598-021-91430-w.
DOI: 10.28991/ESJ-2024-08-04-07
Refbacks
- There are currently no refbacks.