Synthesis and Characterization of Hybridfiber from Gelatin Modified by PVACOS Using Coaxial Electrospinning Techniques as an Advanced Medical Textile Material

Siti Fatimah, Sarto Sarto, Moh. Fahrurrozi, Budhijanto Budhijanto

Abstract


The synthesis of hybrid fiber based on bovine bone gelatin combined with polyvinyl alcohol-chitosan-oxidized sucrose (PVACOS) has been successfully carried out using the coaxial electrospinning technique. The presence of oxidized sucrose can improve the diameter and the tensile strength of hybrid fibers due to the formation of new covalent bonds. The combination of gelatin with PVACOS material aims to increase the strength of the hybrid fiber so that it has better tensile strength characteristics and improves the diameter of the resulting hybrid fiber. The characterization of the resulting material was tested using FTIR, SEM, EDX, XRD, and TGA. Based on FTIR analysis, there is an increase in absorption intensity in the 2900 cm-1 – 3000 cm-1 band, which indicates the occurrence of covalent bond interactions so that it can increase the bond strength between materials with the performance of crystalline materials. Apart from that, the morphological structure of the hybrid fibers was also investigated using scanning electron microscopy (SEM), and the resulting fiber diameter for Ge-Ch, Ge-Ch-PVA, Ge-PVACOS 3%, and Ge-PVACOS 5%, respectively, was 0.4049 µm. 0.3735 µm, 0.3388 µm, and 0.3206 µm. The tensile strengths of hybrid fiber for Ge-PVACOS 3% and Ge-PVACOS 5%, respectively, are 39.91935 N/m2 and 76.12507 N/m2. Statistical tests show that the concentration of oxidized sucrose has a significant influence on hybrid fiber performance. The significance values for diameter and tensile strength are 0.0486 and 0.0325, respectively. According to this performance, the Ge-PVACOS hybrid fiber is recommended as a material for advanced medical textiles.

 

Doi: 10.28991/ESJ-2024-08-02-022

Full Text: PDF


Keywords


Chitosan; PVA; Oxidized Sucrose; Coaxsial Electrospinning.

References


Meier, P., Zabara, M., Hirsch, C., Gogos, A., Tscherrig, D., Richner, G., Nowack, B., & Wick, P. (2022). Evaluation of fiber and debris release from protective COVID-19 mask textiles and in vitro acute cytotoxicity effects. Environment International, 167, 107364. doi:10.1016/j.envint.2022.107364.

Setiawan, K. (2015). 94 Percent of Surgical Threads in Indonesia are Imported. Tempo Co, Jakarta, Indonesia. Available online: https://gaya.tempo.co/read/702241/94-persen-benang-bedah-di-indonesia-impor (accessed on March 2024).

Parvin, F., Islam, S., Urmy, Z., & Ahmed, S. (2020). A Study on the Textile Materials Applied in Human Medical Treatment. European Journal of Physiotherapy and Rehabilitation Studies, 1, 57. doi:10.5281/ZENODO.3779236.

Durand, D., Faure, M., Lamberton, P., Lemosquet, S., & de Boyer des Roches, A. (2021). A multiparametric approach to assessing residual pain experienced by dairy cows undergoing digestive tract surgery under multimodal analgesia. Animal, 15(9), 100338. doi:10.1016/j.animal.2021.100338.

Baybaş, D., Serdaroğlu, G., & Semerci, B. (2021). The composite microbeads of alginate, carrageenan, gelatin, and poly(lactic-co-glycolic acid): Synthesis, characterization and Density Functional Theory calculations. International Journal of Biological Macromolecules, 181, 322–338. doi:10.1016/j.ijbiomac.2021.03.128.

Sangkert, S., Kamolmatyakul, S., Gelinsky, M., & Meesane, J. (2021). 3D printed scaffolds of alginate/polyvinylalcohol with silk fibroin based on mimicked extracellular matrix for bone tissue engineering in maxillofacial surgery. Materials Today Communications, 26, 102140. doi:10.1016/j.mtcomm.2021.102140.

Jiang, L. B., Ding, S. L., Ding, W., Su, D. H., Zhang, F. X., Zhang, T. W., Yin, X. F., Xiao, L., Li, Y. L., Yuan, F. L., & Dong, J. (2021). Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chemical Engineering Journal, 418, 129323. doi:10.1016/j.cej.2021.129323.

Sinsinwar, S., & Vadivel, V. (2021). Development and characterization of catechin-in-cyclodextrin-in-phospholipid liposome to eradicate MRSA-mediated surgical site infection: Investigation of their anti-infective efficacy through in vitro and in vivo studies. International Journal of Pharmaceutics, 609, 121130. doi:10.1016/j.ijpharm.2021.121130.

Ruiz-Tovar, J., Llavero, C., Jimenez-Fuertes, M., Duran, M., Perez-Lopez, M., & Garcia-Marin, A. (2020). Incisional Surgical Site Infection after Abdominal Fascial Closure with Triclosan-Coated Barbed Suture vs Triclosan-Coated Polydioxanone Loop Suture vs Polydioxanone Loop Suture in Emergent Abdominal Surgery: A Randomized Clinical Trial. Journal of the American College of Surgeons, 230(5), 766–774. doi:10.1016/j.jamcollsurg.2020.02.031.

dos Santos, C. H. M., dos Santos Filho, K. G., Cassino, P. C., Chiquetti, C. V., de Mello, A. P., & Dourado, D. M. (2017). Differences between polydioxanone and poliglactin in intestinal anastomoses - A comparative study of intestinal anastomoses. Journal of Coloproctology, 37(4), 263–267. doi:10.1016/j.jcol.2017.05.004.

Mohammadi, H., Alihosseini, F., & Hosseini, S. A. (2020). Improving physical and biological properties of nylon monofilament as suture by Chitosan/Hyaluronic acid. International Journal of Biological Macromolecules, 164, 3394–3402. doi:10.1016/j.ijbiomac.2020.08.081.

Dittmer, S., Paepke, S., Klein, E., Ohlinger, R., & Kiechle, M. (2012). 614 First Experiences with the Implementation of a Two Component Polypropylen-vicryl Mesh (SERAGYN® BR) as Tissue-supporting Extraneous Material in Plastic Reconstructive Surgery. European Journal of Cancer, 48, S224. doi:10.1016/s0959-8049(12)70679-2.

Gressier, P., De Smet, D., Behary, N., Campagne, C., & Vanneste, M. (2019). Antibacterial polyester fabrics via diffusion process using active bio-based agents from essential oils. Industrial Crops and Products, 136, 11–20. doi:10.1016/j.indcrop.2019.04.014.

Lopetuso, L. R., De Salvo, C., Di Martino, L., Rana, N., Goodman, W., Scaldaferri, F., Armuzzi, A., Gasbarrini, A., & Pizarro, T. T. (2018). Oc.02.1 Il-33 Promotes Gut Mucosal Wound Healing By Inducing Mirna-320 To Stimulate Epithelial Restitution and Repair. Digestive and Liver Disease, 50(2), e71. doi:10.1016/s1590-8658(18)30273-1.

Porrelli, D., Berton, F., Camurri Piloni, A., Kobau, I., Stacchi, C., Di Lenarda, R., & Rizzo, R. (2021). Evaluating the stability of extended-pour alginate impression materials by using an optical scanning and digital method. Journal of Prosthetic Dentistry, 125(1), 189.e1-189.e7. doi:10.1016/j.prosdent.2020.06.022.

Zheng, W., Chen, C., Zhang, X., Wen, X., Xiao, Y., Li, L., Xu, Q., Fu, F., Diao, H., & Liu, X. (2021). Layer-by-layer coating of carboxymethyl chitosan-gelatin-alginate on cotton gauze for hemostasis and wound healing. Surface and Coatings Technology, 406, 126644. doi:10.1016/j.surfcoat.2020.126644.

Fatimah, S., Sarto, S., Fahrurrozi, M., & Budhijanto, B. (2023). Characterization and Development of Gelatin from Cow Bones: Investigation of the Effect of Solvents Used for Soaking Beef Bones. Applied Sciences (Switzerland), 13(3), 1550. doi:10.3390/app13031550.

Aksun Tümerkan, E. T., Cansu, Ü., Boran, G., Regenstein, J. Mac, & Özoğul, F. (2019). Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chemistry, 287, 273–279. doi:10.1016/j.foodchem.2019.02.088.

Hamzah, N., Fadhlurrahman, M., Ningsi, S., & Haeria, H. (2019). Profil Indeks Pengembangan Ikatan-Silang Gelatin-Kitosan. Ad-Dawaa’ Journal of Pharmaceutical Sciences, 2(2). doi:10.24252/djps.v2i2.12147.

Bichukale, A. D., Koli, J. M., Sonavane, A. E., Vishwasrao, V. V., Pujari, K. H., & Shingare, P. E. (2018). Functional properties of gelatin extracted from poultry skin and bone waste. International Journal of Pure & Applied Bioscience, 6(4), 87-101. doi:10.18782/2320-7051.6768.

Ahmed, M. A., Al-Kahtani, H. A., Jaswir, I., AbuTarboush, H., & Ismail, E. A. (2020). Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi Journal of Biological Sciences, 27(6), 1596–1601. doi:10.1016/j.sjbs.2020.03.022.

Mulyani, S., Aristia, K. S., Sabrina, A. P., Arfiah, A., & Niam, B. (2020). Potential of Water Extract of The White Frangipani (Plumeria acuminate) and Hibiscus (Hibiscus tiliaceus) Leaves Powder as Textile Natural Dyes. JKPK (Jurnal Kimia dan Pendidikan Kimia), 5(1), 100-109.

Hatamvand, M., Kamrani, E., Lira-Cantú, M., Madsen, M., Patil, B. R., Vivo, P., Mehmood, M. S., Numan, A., Ahmed, I., & Zhan, Y. (2020). Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy, 71, 104609. doi:10.1016/j.nanoen.2020.104609.

Wang, X., Hou, M., Liu, X., Yue, O., & Zheng, M. (2021). Feasibility Study of Gelatin Preparation from the Bioinspired Collagen Aggregates by a “two-step” Facile Degradation Method. ACS Applied Bio Materials, 4(3), 2363–2372. doi:10.1021/acsabm.0c01215.

Cao, C., Wang, F., & Lu, M. (2020). Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation. Materials Letters, 260, 126956. doi:10.1016/j.matlet.2019.126956.

Li, P., Wang, B., Liu, Y. Y., Xu, Y. J., Jiang, Z. M., Dong, C. H., Zhang, L., Liu, Y., & Zhu, P. (2020). Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydrate Polymers, 237, 116173. doi:10.1016/j.carbpol.2020.116173.

Dinh, N. H., Tran, H. Van, & Choi, K. K. (2020). Direct shear behavior of cementitious mortar reinforced by carbon fiber textile. Construction and Building Materials, 249, 118760. doi:10.1016/j.conbuildmat.2020.118760.

Drago, E., Campardelli, R., Barbucci, A., & Perego, P. (2023). Polycaprolactone sub-micrometric fibers optimization for primary packaging loaded with fatty acids as natural phase change materials. Journal of Food Engineering, 358, 111680. doi:10.1016/j.jfoodeng.2023.111680.

Obisesan, O. S., Ajiboye, T. O., Mhlanga, S. D., & Mufhandu, H. T. (2023). Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites. Colloids and Surfaces B: Biointerfaces, 227, 113342. doi:10.1016/j.colsurfb.2023.113342.

Akshay Kumar, K. P., Zare, E. N., Torres-Mendieta, R., Wacławek, S., Makvandi, P., Černík, M., Padil, V. V. T., & Varma, R. S. (2021). Electrospun fibers based on botanical, seaweed, microbial, and animal sourced biomacromolecules and their multidimensional applications. International Journal of Biological Macromolecules, 171, 130–149. doi:10.1016/j.ijbiomac.2020.12.205.

Taheri, P., & Khajeh-Amiri, A. (2020). Antibacterial cotton fabrics via immobilizing silver phosphate nanoparticles onto the chitosan nanofiber coating. International Journal of Biological Macromolecules, 158, 282–289. doi:10.1016/j.ijbiomac.2020.04.258.

Yan, J., He, S., Chen, L., Chen, H., & Wang, W. (2023). Characterization, antioxidant and antibacterial activities of gelatin-chitosan edible coated films added with Cyclocarya paliurus flavonoids. International Journal of Biological Macromolecules, 253, 127664. doi:10.1016/j.ijbiomac.2023.127664.

Yang, H., Tan, X., Du, G., Ni, K., Wu, Y., Li, Z., Ran, X., Gao, W., Li, J., & Yang, L. (2023). Development of biomass adhesives based on aminated cellulose and oxidized sucrose reinforced with epoxy functionalized wood interface. Composites Part B: Engineering, 263, 110872. doi:10.1016/j.compositesb.2023.110872.

Kovačičin, J., Hauzerová, S., Běhálek, L., Lukáš, D., & Kuželová Košťáková, E. (2024). Sponge-like wet electrospun polycaprolactone fibres. Materials Letters, 355, 135460. doi:10.1016/j.matlet.2023.135460.

Tyuftin, A. A., & Kerry, J. P. (2021). Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packaging and Shelf Life, 29, 100688. doi:10.1016/j.fpsl.2021.100688.

Sathisaran, I., & Balasubramanian, M. (2020). Physical characterization of chitosan/gelatin-alginate composite beads for controlled release of urea. Heliyon, 6(11), 5495. doi:10.1016/j.heliyon.2020.e05495.

Nasseri, F., Rokhsat, E., & Dorranian, D. (2016). Low power continues wave nonlinear optics in red BS dye doped PVA thin film. Optik, 127(17), 6813–6820. doi:10.1016/j.ijleo.2016.05.026.

Jalaja, K., & James, N. R. (2015). Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules, 73(1), 270–278. doi:10.1016/j.ijbiomac.2014.11.018.

Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. doi:10.1002/app.21481.

Xing, J., Zhang, M., Liu, X., Wang, C., Xu, N., & Xing, D. (2023). Multi-material electrospinning: from methods to biomedical applications. Materials Today Bio, 21, 100710. doi:10.1016/j.mtbio.2023.100710.

Ding, B., Yu, J., & Wang, X. (2018). Electrospinning: Nanofabrication and applications. In Electrospinning: Nanofabrication and Applications. Elsevier. doi:10.1016/C2016-0-01374-8.

Gani, B. A., Asmah, N., Soraya, C., Syafriza, D., Rezeki, S., Nazar, M., ... & Soedarsono, N. (2023). Characteristics and antibacterial properties of film membrane of chitosan-resveratrol for wound dressing. Emerging Science Journal, 7(3), 821-842. doi:10.28991/ESJ-2023-07-03-012.

Vaseashta, A., & Bölgen, N. (2022). Electrospun Nanofibers: Principles, Technology and Novel Applications. Electrospun Nanofibers: Principles, Technology and Novel Applications, 1–766. doi:10.1007/978-3-030-99958-2.

Ali, I. H., Elkashlan, A. M., Hammad, M. A., & Hamdi, M. (2023). Antimicrobial and anti-SARS-CoV-2 activities of smart daclatasvir-chitosan/gelatin nanoparticles-in-PLLA nanofibrous medical textiles; in vitro, and in vivo study. International Journal of Biological Macromolecules, 253, 127350. doi:10.1016/j.ijbiomac.2023.127350.

Khadayeir, A. A., Wannas, A. H., & Yousif, F. H. (2022). Effect of Applying Cold Plasma on Structural, Antibacterial and Self Cleaning Properties of α-Fe2O3 (HEMATITE) Thin Film. Emerging Science Journal, 6(1), 75–85. doi:10.28991/ESJ-2022-06-01-06.

Sinha, M. K., Das, B. R., Bharathi, D., Prasad, N. E., Kishore, B., Raj, P., & Kumar, K. (2020). Electrospun nanofibrous materials for biomedical textiles. Materials Today: Proceedings, 21, 1818–1826. doi:10.1016/j.matpr.2020.01.236.

Pato, U., Ayu, D. F., Riftyan, E., Restuhadi, F., Pawenang, W. T., Firdaus, R., Rahma, A., & Jaswir, I. (2022). Cellulose Microfiber Encapsulated Probiotic: Viability, Acid and Bile Tolerance during Storage at Different Temperature. Emerging Science Journal, 6(1), 106–117. doi:10.28991/ESJ-2022-06-01-08.

Khanlou, H. M., Ang, B. C., Talebian, S., Barzani, M. M., Silakhori, M., & Fauzi, H. (2015). Multi-response analysis in the processing of poly (methyl methacrylate) nano-fibres membrane by electrospinning based on response surface methodology: Fibre diameter and bead formation. Measurement: Journal of the International Measurement Confederation 65, 193–206. doi:10.1016/j.measurement.2015.01.014.

Ahmadipourroudposht, M., Fallahiarezoudar, E., Yusof, N. M., & Idris, A. (2015). Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Materials Science and Engineering C, 50, 234–241. doi:10.1016/j.msec.2015.02.008.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-02-022

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Siti Fatimah, Sarto Sarto, Moh. Fahrurrozi, Budhijanto Budhijanto