Comparison of Activation Functions in Convolutional Neural Network for Poisson Noisy Image Classification
Abstract
Doi: 10.28991/ESJ-2024-08-02-014
Full Text: PDF
Keywords
References
Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C., & Valenzuela, A. (2020). A review of convolutional neural network applied to fruit image processing. Applied Sciences (Switzerland), 10(10), 3443. doi:10.3390/app10103443.
Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional Neural Network (CNN) for Image Detection and Recognition. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India. doi:10.1109/icsccc.2018.8703316.
Soydaner, D. (2020). A Comparison of Optimization Algorithms for Deep Learning. International Journal of Pattern Recognition and Artificial Intelligence, 34(13), 2052013. doi:10.1142/S0218001420520138.
Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 2018. doi:10.1155/2018/7068349.
Mohammed, N. A., Abed, M. H., & Albu-Salih, A. T. (2022). Convolutional neural network for color images classification. Bulletin of Electrical Engineering and Informatics, 11(3), 1343–1349. doi:10.11591/eei.v11i3.3730.
Badža, M. M., & Barjaktarović, M. C. (2020). Classification of brain tumors from MRI images using a convolutional neural network. Applied Sciences (Switzerland), 10(6), 1999. doi:10.3390/app10061999.
Zhao, J., & Li, L. (2021). Research on image classification algorithm based on convolutional neural Network-TensorFlow. Journal of Physics: Conference Series, 2010(1), 12096. doi:10.1088/1742-6596/2010/1/012096.
Ashraf, S., Kadery, I., Chowdhury, A. A., Mahbub, T. Z., & Rahman, R. M. (2019). Fruit Image Classification Using Convolutional Neural Networks. International Journal of Software Innovation, 7(4), 51–70. doi:10.4018/IJSI.2019100103.
Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications, 24(3), 1207–1220. doi:10.1007/s10044-021-00984-y.
Ashhar, S. M., Mokri, S. S., Rahni, A. A. A., Huddin, A. B., Zulkarnain, N., Azmi, N. A., & Mahaletchumy, T. (2021). Comparison of deep learning convolutional neural network (CNN) architectures for CT lung cancer classification. International Journal of Advanced Technology and Engineering Exploration, 8(74), 126–134. doi:10.19101/IJATEE.2020.S1762126.
ERDEM, E., & AYDİN, T. (2021). Detection of Pneumonia with a Novel CNN-based Approach. Sakarya University Journal of Computer and Information Sciences, 4(1), 26–34. doi:10.35377/saucis.04.01.787030.
Xu, Z., Guo, X., Zhu, A., He, X., Zhao, X., Han, Y., & Subedi, R. (2020). Using deep convolutional neural networks for image-based diagnosis of nutrient deficiencies in rice. Computational Intelligence and Neuroscience, 7307252. doi:10.1155/2020/7307252.
Li, Q., Shen, L., Guo, S., & Lai, Z. (2020). Wavelet Integrated CNNs for Noise-Robust Image Classification. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, United States. doi:10.1109/cvpr42600.2020.00727.
Pei, Y., Huang, Y., Zou, Q., Zhang, X., & Wang, S. (2021). Effects of Image Degradation and Degradation Removal to CNN-Based Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1239–1253. doi:10.1109/TPAMI.2019.2950923.
Busch, N. A., & Micheli-Tzanakou. (1989). Neural network design: methodology. International Joint Conference on Neural Networks, Washington, United States. doi:10.1109/ijcnn.1989.118439.
Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The influence of the activation function in a convolution neural network model of facial expression recognition. Applied Sciences (Switzerland), 10(5), 1897. doi:10.3390/app10051897.
Fausett, L. V. (2006). Fundamentals of neural networks: architectures, algorithms, and applications. Pearson Education India, Noida, India.
Momeny, M., Latif, A. M., Agha Sarram, M., Sheikhpour, R., & Zhang, Y. D. (2021). A noise robust convolutional neural network for image classification. Results in Engineering, 10, 100225. doi:10.1016/j.rineng.2021.100225.
Phaladisailoed, T., & Numnonda, T. (2018). Machine Learning Models Comparison for Bitcoin Price Prediction. 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Bali, Indonesia. doi:10.1109/iciteed.2018.8534911.
Hendarto, J. (2017). Denoising Grayscale Images Using the Fractal Method. PRODUKTIF: Jurnal Ilmiah Pendidikan Teknologi Informasi, 1, 1-12. (In Indonesian).
Owotogbe, J. S., Ibiyemi, T. S., & Adu, B. A. (2019). A comprehensive review on various types of noise in image processing. International Journal of Scientific & Engineering Research, 10(11), 388-393.
Thakur, R. S., Chatterjee, S., Yadav, R. N., & Gupta, L. (2021). Image De-Noising with Machine Learning: A Review. IEEE Access, 9, 93338–93363. doi:10.1109/ACCESS.2021.3092425.
Desai, M., & Shah, M. (2021). An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clinical EHealth, 4, 1–11. doi:10.1016/j.ceh.2020.11.002.
Patil, A., & Rane, M. (2021). Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition. Smart Innovation, Systems and Technologies, 195, 21–30. doi:10.1007/978-981-15-7078-0_3.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). A Book on Deep Learning. MIT Press Book, Cambridge, United States.
Zhou, Z., Yuan, H., & Cai, X. (2023). Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics, 11(5), 1245. doi:10.3390/math11051245.
Monnet, M., Gebran, H., Matic-Flierl, A., Kiwit, F., Schachtner, B., Bentellis, A., & Lorenz, J. M. (2023). Pooling Techniques in Hybrid Quantum-Classical Convolutional Neural Networks. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Bellevue, United States. doi:10.1109/qce57702.2023.00074.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. doi:10.1186/s40537-021-00444-8.
Rafidison, M. A., Ramafiarisona, H. M., Randriamitantsoa, P. A., Rafanantenana, S. H. J., Toky, F. M. R., Rakotondrazaka, L. P., & Rakotomihamina, A. H. (2023). Image Classification Based on Light Convolutional Neural Network Using Pulse Couple Neural Network. Computational Intelligence and Neuroscience, 2023, 1–17. doi:10.1155/2023/7371907.
Abdulkadirov, R., Lyakhov, P., & Nagornov, N. (2023). Survey of Optimization Algorithms in Modern Neural Networks. Mathematics, 11(11), 2466. doi:10.3390/math11112466.
Kinsley, H. & Kukieła, D. (2020). Neural Networks from Scratch in Python. Available online: https://nnfs.io/ (accessed on March 2024).
Mao, A., Mohri, M., & Zhong, Y. (2023). Cross-entropy loss functions: Theoretical analysis and applications. International Conference on Machine Learning, 23-29 July, 2023, Honolulu, United States.
Singarimbun, R. N., Nababan, E. B., & Sitompul, O. S. (2019). Adaptive Moment Estimation to Minimize Square Error in Backpropagation Algorithm. 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), Medan, Indonesia. doi:10.1109/icosnikom48755.2019.9111563.
Kaggle. (2021). miniImageNet: re-processed miniImageNet dataset for few-shot learning research. Kaggle, San Francisco, United States. Available online: https://www.kaggle.com/datasets/arjunashok33/miniimagenet (accessed on March 2024).
Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine, 111, 103345. doi:10.1016/j.compbiomed.2019.103345.
DOI: 10.28991/ESJ-2024-08-02-014
Refbacks
- There are currently no refbacks.