Improved Fingerprint-Based Localization Based on Sequential Hybridization of Clustering Algorithms
Abstract
Doi: 10.28991/ESJ-2024-08-02-02
Full Text: PDF
Keywords
References
Yaro, A. S., Malý, F., & Malý, K. (2023). A Two-Nearest Wireless Access Point-Based Fingerprint Clustering Algorithm for Improved Indoor Wireless Localization. Emerging Science Journal, 7(5), 1762–1770. doi:10.28991/ESJ-2023-07-05-019.
Yong, Y. F., Tan, C. K., Tan, I. K., & Tan, S. W. (2023). C-VoNNI: a precise fingerprint construction for indoor positioning systems using natural neighbor methods with clustering-based Voronoi diagrams. The Journal of Supercomputing, 1-28. doi:10.1007/s11227-023-05855-3.
Yaro, A. S., Maly, F., & Maly, K. (2023). Improved Indoor Localization Performance Using a Modified Affinity Propagation Clustering Algorithm with Context Similarity Coefficient. IEEE Access, 11, 57341–57348. doi:10.1109/ACCESS.2023.3283592.
Shang, S., & Wang, L. (2022). Overview of Wi-Fi fingerprinting-based indoor positioning. IET Communications, 16(7), 725–733. doi:10.1049/cmu2.12386.
Al Mamun, M. A., Anaya, D. V., & Yuce, M. R. (2021). FaStER: Fast, Stable, Expendable and Reliable Radio Map for Indoor Localization. 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kailua-Kona, United States. doi:10.1109/inertial51137.2021.9430464.
Khoo, H. W., Ng, Y. H., & Tan, C. K. (2022). Enhanced Radio Map Interpolation Methods Based on Dimensionality Reduction and Clustering. Electronics, 11(16), 2581. doi:10.3390/electronics11162581.
Yaro, A. S., Maly, F., & Prazak, P. (2023). A Survey of the Performance-Limiting Factors of a 2-Dimensional RSS Fingerprinting-Based Indoor Wireless Localization System. Sensors, 23(5), 2545. doi:10.3390/s23052545.
Singh, N., Choe, S., & Punmiya, R. (2021). Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview. IEEE Access, 9, 127150–127174. doi:10.1109/ACCESS.2021.3111083.
Quezada-Gaibor, D., Torres-Sospedra, J., Nurmi, J., Koucheryavy, Y., & Huerta, J. (2021). Lightweight Wi-Fi Fingerprinting with a Novel RSS Clustering Algorithm. 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain. doi:10.1109/ipin51156.2021.9662612.
Ezhumalai, B., Song, M., & Park, K. (2021). An efficient indoor positioning method based on Wi-Fi RSS fingerprint and classification algorithm. Sensors, 21(10), 3418. doi:10.3390/s21103418.
Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. doi:10.1007/s40745-015-0040-1.
Abed, A., & Abdel-Qader, I. (2019). RSS-fingerprint dimensionality reduction for multiple service set identifier-based indoor positioning systems. Applied Sciences (Switzerland), 9(15), 3137. doi:10.3390/app9153137.
Bakhthemmat, A., & Izadi, M. (2020). Decreasing the execution time of reducers by revising clustering based on the futuristic greedy approach. Journal of Big Data, 7(1), 6. doi:10.1186/s40537-019-0279-z.
Baldini, G., Giuliani, R., Steri, G., Sanchez, I., & Gentile, C. (2017). The application of the Symbolic Aggregate Approximation algorithm (SAX) to radio frequency fingerprinting of IoT devices. 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT), Leuven, Belgium. doi:10.1109/scvt.2017.8240312.
Chiang, M. C., Tsai, C. W., & Yang, C. S. (2011). A time-efficient pattern reduction algorithm for k-means clustering. Information Sciences, 181(4), 716–731. doi:10.1016/j.ins.2010.10.008.
Klus, L., Quezada-Gaibor, D., Torres-Sospedra, J., Lohan, E. S., Granell, C., & Nurmi, J. (2020). RSS Fingerprinting Dataset Size Reduction Using Feature-Wise Adaptive k-Means Clustering. 12th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech. doi:10.1109/icumt51630.2020.9222458.
Li, A., Fu, J., Shen, H., & Sun, S. (2021). A Cluster-Principal-Component-Analysis-Based Indoor Positioning Algorithm. IEEE Internet of Things Journal, 8(1), 187–196. doi:10.1109/JIOT.2020.3001383.
Sagheer, N. S., & Yousif, S. A. (2021). Canopy with k-means clustering algorithm for big data analytics. AIP Conference Proceedings. doi:10.1063/5.0042398.
Liu, S., DE Lacerda, R., & Fiorina, J. (2021). WKNN indoor Wi-Fi localization method using k-means clustering based radio mapping. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland. doi:10.1109/vtc2021-spring51267.2021.9448961.
Zhao, H. (2022). Design and Implementation of an Improved K-Means Clustering Algorithm. Mobile Information Systems, 2022, 1–10. doi:10.1155/2022/6041484.
Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 7-9 January, 2007, New Orleans, United States.
Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200–210. doi:10.1016/j.eswa.2012.07.021.
Bi, J., Huang, L., Cao, H., Yao, G., Sang, W., Zhen, J., & Liu, Y. (2021). Improved indoor fingerprinting localization method using clustering algorithm and dynamic compensation. ISPRS International Journal of Geo-Information, 10(9), 613. doi:10.3390/ijgi10090613.
Sadowski, S., Spachos, P., & Plataniotis, K. N. (2020). Memoryless Techniques and Wireless Technologies for Indoor Localization with the Internet of Things. IEEE Internet of Things Journal, 7(11), 10996–11005. doi:10.1109/JIOT.2020.2992651.
Alhmiedat, T. (2023). Fingerprint-Based Localization Approach for WSN Using Machine Learning Models. Applied Sciences, 13(5), 3037. doi:10.3390/app13053037.
Moreira, A., Silva, I., Meneses, F., Nicolau, M. J., Pendao, C., & Torres-Sospedra, J. (2017). Multiple simultaneous Wi-Fi measurements in fingerprinting indoor positioning. 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan. doi:10.1109/ipin.2017.8115914.
Torres-Sospedra, J., Moreira, A., Mendoza-Silva, G. M., Joao Nicolau, M., Matey-Sanz, M., Silva, I., Huerta, J., & Pendao, C. (2019). Exploiting Different Combinations of Complementary Sensor’s data for Fingerprint-based Indoor Positioning in Industrial Environments. 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy. doi:10.1109/ipin.2019.8911758.
Wu, Y., Jia, Z., Dai, Y., & Wang, W. (2022). Research on Wi-Fi Location Fingerprint Positioning Algorithm Based on DPC-FCM Clustering. Wireless Communications and Mobile Computing, 2022, 1–7. doi:10.1155/2022/8347084.
DOI: 10.28991/ESJ-2024-08-02-02
Refbacks
- There are currently no refbacks.