Enhancing GI Cancer Radiation Therapy: Advanced Organ Segmentation with ResECA-U-Net Model
Abstract
Doi: 10.28991/ESJ-2024-08-03-012
Full Text: PDF
Keywords
References
Sharma, M. (2022). Automated GI tract segmentation using deep learning. arXiv preprint arXiv:2206.11048, 1-11. doi:10.48550/arXiv.2206.11048.
Elgayar, S., Hamad, S., & El-Horbaty, E.-S. (2023). Revolutionizing Medical Imaging through Deep Learning Techniques: An Overview. International Journal of Intelligent Computing and Information Sciences, 23(3), 59–72. doi:10.21608/ijicis.2023.211266.1274.
Zhang, C., Xu, J., Tang, R., Yang, J., Wang, W., Yu, X., & Shi, S. (2023). Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. Journal of Hematology & Oncology, 16(1), 114. doi:10.1186/s13045-023-01514-5.
Zhu, N. (2023). Research on Customer Relationship Segmentation of Apparel Retail Industry through Data Mining. HighTech and Innovation Journal, 4(2), 309-314. doi:10.28991/HIJ-2023-04-02-05.
Ali, S., Dmitrieva, M., Ghatwary, N., Bano, S., Polat, G., Temizel, A., ... & Rittscher, J. (2021). Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy. Medical image analysis, 70, 102002. doi:10.1016/j.media.2021.102002.
Mkindu, H., Wu, L., & Zhao, Y. (2023). Lung nodule detection of CT images based on combining 3D-CNN and squeeze-and-excitation networks. Multimedia Tools and Applications, 82(17), 25747-25760. doi:10.1007/s11042-023-14581-0.
Chou, A., Li, W., & Roman, E. (2022). GI tract image segmentation with U-Net and mask R-CNN. Image Segmentation with U-Net and Mask R-CNN. Stanford University, California, United States. Available online: http://cs231n.stanford.edu/reports/2022/pdfs/164. pdf (accessed on May 2024).
Chia, B., Gu, H., & Lui, N. (2022). Gastrointestinal tract segmentation using multi-task learning. CS231n: Deep Learning for Computer Vision Stanford Spring. Stanford University, California, United States. Available online: https://cs231n.stanford.edu/reports/2022/pdfs/75.pdf (accessed on May 2024).
Khan, M. A., Khan, M. A., Ahmed, F., Mittal, M., Goyal, L. M., Jude Hemanth, D., & Satapathy, S. C. (2020). Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognition Letters, 131, 193–204. doi:10.1016/j.patrec.2019.12.024.
Do, H. Q., Nguyen, T. H., Vu, V. V., Hoang, T. M., Nguyen, H. M., & Nguyen, T. T. D. (2021). Evaluation of U-Net and Its Variants in Solving Upper Gastrointestinal Endoscopy Segmentation. 15th International Conference on Advanced Computing and Applications (ACOMP), 70-77. doi:Ho Chi Minh City, Vietnam.
Wang, S., Cong, Y., Zhu, H., Chen, X., Qu, L., Fan, H., Zhang, Q., & Liu, M. (2021). Multi-Scale Context-Guided Deep Network for Automated Lesion Segmentation with Endoscopy Images of Gastrointestinal Tract. IEEE Journal of Biomedical and Health Informatics, 25(2), 514–525. doi:10.1109/JBHI.2020.2997760.
Sharma, N., Gupta, S., Koundal, D., Alyami, S., Alshahrani, H., Asiri, Y., & Shaikh, A. (2023). U-Net Model with Transfer Learning Model as a Backbone for Segmentation of Gastrointestinal Tract. Bioengineering, 10(1), 119. doi:10.3390/bioengineering10010119.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. doi:10.1007/978-3-319-24574-4_28.
Holzmann, G. J. (1997). State compression in SPIN: Recursive indexing and compression training runs. Proceedings of third international Spin workshop, University of Twente, Enschede, The Netherlands, 1-10.
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., & Hu, Q. (2020). ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, United States. doi:10.1109/cvpr42600.2020.01155.
Bian, J., & Liu, Y. (2020). Dual Channel Attention Networks. Journal of Physics: Conference Series, 1642(1), 12004. doi:10.1088/1742-6596/1642/1/012004.
García-Pedrajas, N., Hervás-Martínez, C., & Ortiz-Boyer, D. (2005). Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3), 271–302. doi:10.1109/TEVC.2005.844158.
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., ... & Hadsell, R. (2016). Progressive neural networks. arXiv preprint, arXiv:1606.04671. doi:10.48550/arXiv.1606.04671
Kirst, C., Skriabine, S., Vieites-Prado, A., Topilko, T., Bertin, P., Gerschenfeld, G., Verny, F., Topilko, P., Michalski, N., Tessier-Lavigne, M., & Renier, N. (2020). Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature. Cell, 180(4), 780-795.e25. doi:10.1016/j.cell.2020.01.028.
Pacheco, M., Oliva, G., Rajbahadur, G. K., & Hassan, A. (2023). Is My Transaction Done Yet? An Empirical Study of Transaction Processing Times in the Ethereum Blockchain Platform. ACM Transactions on Software Engineering and Methodology, 32(3), 1-46. doi:10.1145/3549542.
Mashhadi, P. S., Nowaczyk, S., & Pashami, S. (2021). Parallel orthogonal deep neural network. Neural Networks, 140, 167–183. doi:10.1016/j.neunet.2021.03.002.
Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., & Zhu, C. (2013). Personalized recommendation via cross-domain triadic factorization. Proceedings of the 22nd International Conference on World Wide Web, 595 - 606. doi:10.1145/2488388.2488441.
Fernández-Martínez, F., Luna-Jiménez, C., Kleinlein, R., Griol, D., Callejas, Z., & Montero, J. M. (2022). Fine-Tuning BERT Models for Intent Recognition Using a Frequency Cut-Off Strategy for Domain-Specific Vocabulary Extension. Applied Sciences, 12(3), 1610. doi:10.3390/app12031610.
Georgescu, M.-I., Ionescu, R. T., & Miron, A. I. (2023). Diversity-Promoting Ensemble for Medical Image Segmentation. Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 599 - 606. doi:10.1145/3555776.3577682.
Jiang, W., Chen, Y., Wen, S., Zheng, L., & Jin, H. (2023). PDAS: Improving network pruning based on Progressive Differentiable Architecture Search for DNNs. Future Generation Computer Systems, 146, 98–113. doi:10.1016/j.future.2023.04.011.
Mavaddati, S. (2024). Voice-based Age, Gender, and Language Recognition Based on ResNet Deep model and Transfer learning in Spectro-Temporal Domain. Neurocomputing, 127429. doi:10.1016/j.neucom.2024.127429.
Sai, M. J., & Punn, N. S. (2023). LWU-Net approach for Efficient Gastro-Intestinal Tract Image Segmentation in Resource-Constrained Environments. doi:10.1101/2023.12.05.23299425.
Guggari, S., Srivastava, B. C., Kumar, V., Harshita, H., Farande, V., Kulkarni, U., & Meena, S. M. (2023). RU-Net: A Novel Approach for Gastro-Intestinal Tract Image Segmentation Using Convolutional Neural Network. Communications in Computer and Information Science, 1818 CCIS, 131–141. doi:10.1007/978-3-031-34222-6_11.
Zhou, H., Lou, Y., Xiong, J., Wang, Y., & Liu, Y. (2023). Improvement of Deep Learning Model for Gastrointestinal Tract Segmentation Surgery. Frontiers in Computing and Intelligent Systems, 6(1), 103–106. doi:10.54097/fcis.v6i1.19.
Sharma, N., Gupta, S., Rajab, A., Elmagzoub, M. A., Rajab, K., & Shaikh, A. (2023). Semantic Segmentation of Gastrointestinal Tract in MRI Scans Using PSPNet Model with ResNet34 Feature Encoding Network. IEEE Access, 11, 132532–132543. doi:10.1109/ACCESS.2023.3336862.
DOI: 10.28991/ESJ-2024-08-03-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 SM Nuruzzaman Nobel, Omar Faruque Sifat, Md. Rajibul Islam, Md Shohel Sayeed, Md Amiruzzaman