System Parameters Sensitivity Analysis of Ocean Thermal Energy Conversion

. Rasgianti, Ristiyanto Adiputra, Ariyana D. Nugraha, Ruly B. Sitanggang, Wahyu W. Pandoe, . Aprijanto, Takeshi Yasunaga, Muhammad A. Santosa


Ocean Thermal Energy Conversion (OTEC) is a technology to harvest the solar energy stored in the ocean by utilizing the temperature difference between warm surface and cold deep seawater. Considering that the OTEC system works in a low-temperature range, the present paper assessed the technical resources comprehensively by acquiring in-situ thermocline data and conducting a sensitivity analysis of the system parameters. The in-situ temperature profile data were measured in the waters of North Bali, Indonesia. The temperature gradient data based on field measurements were then compared with the HYCOM consortium model. The data were then used as input in the OTEC power and efficiency estimation through a single-stage ranking cycle. The analysis was conducted by varying the type of working fluid, the performance of the heat exchanger, and the location to investigate how the system parameters influenced the power produced. Using an unusual combination of parameters made it difficult to analyze the resulting data multiple times. However, with reference-based analysis and the formulation of calculations, the sensitivity of each parameter could be assessed at both locations. As a result, the ammonia working fluid provided the highest net power output of the system but had the lowest efficiency of all working fluids. The heat exchanger performance in terms of net power and efficiency cannot be separated from the seawater mass flow requirement. This referred to the results where the heat exchanger with a temperature difference of 3°C before and after the seawater passed through the heat exchanger and produced the highest net power and efficiency. Additionally, the net power output reached its convergence level at a water depth of 400m for the Bungkulan site and 450m for Celukan Bawang, which was proportional to the thermocline tendency.


Doi: 10.28991/ESJ-2024-08-02-04

Full Text: PDF


Ocean Therma Energy Conversion (OTEC); Temperature Profile; Single-Stage Rankine Cycle; Heat Exchanger; Net Power Output.


Alanazi, M. A., Aloraini, M., Islam, M., Alyahya, S., & Khan, S. (2023). Wind Energy Assessment Using Weibull Distribution with Different Numerical Estimation Methods: A Case Study. Emerging Science Journal, 7(6), 2260-2278. doi:10.28991/ESJ-2023-07-06-024.

Wang, C. M., Yee, A. A., Krock, H., & Tay, Z. Y. (2011). Research and developments on ocean thermal energy conversion. IES Journal Part A: Civil and Structural Engineering, 4(1), 41–52. doi:10.1080/19373260.2011.543606.

Nihous, G. C., & Vega, L. A. (1993). Design of a 100 MW OTEC-hydrogen plantship. Marine Structures, 6(2–3), 207–221. doi:10.1016/0951-8339(93)90020-4.

Koto, J. (2016). Potential of Ocean Thermal Energy Conversion in Indonesia. International Journal of Environmental Research & Clean Energy, 4(1), 1–7.

Sinuhaji, A. R. (2015). Potential Ocean Thermal Energy Conversion (OTEC) in Bali. KnE Energy, 1(1), 5. doi:10.18502/ken.v1i1.330.

Adiputra, R., & Utsunomiya, T. (2018). Design Optimization of Floating Structure for a 100 MW-Net Ocean Thermal Energy Conversion (OTEC) Power Plant. Volume 10: Ocean Renewable Energy. doi:10.1115/omae2018-77539.

Adiputra, R., Utsunomiya, T., Koto, J., Yasunaga, T., & Ikegami, Y. (2020). Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia. Journal of Marine Science and Technology (Japan), 25(1), 48–68. doi:10.1007/s00773-019-00630-7.

Lutfi, Y. M., Adiputra, R., Prabowo, A. R., Utsunomiya, T., Erwandi, E., & Muhayat, N. (2023). Assessment of the stiffened panel performance in the OTEC seawater tank design: Parametric study and sensitivity analysis. Theoretical and Applied Mechanics Letters, 13(4). doi:10.1016/j.taml.2023.100452.

Adiputra, R., & Utsunomiya, T. (2019). Stability Analysis of Free Hanging Riser Conveying Fluid for Ocean Thermal Energy Conversion (OTEC) Utilization. Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology. doi:10.1115/omae2019-96749.

Adiputra, R., & Utsunomiya, T. (2019). Stability based approach to design cold-water pipe (CWP) for ocean thermal energy conversion (OTEC). Applied Ocean Research, 92. doi:10.1016/j.apor.2019.101921.

Adiputra, R., & Utsunomiya, T. (2021). Linear vs non-linear analysis on self-induced vibration of OTEC cold water pipe due to internal flow. Applied Ocean Research, 110. doi:10.1016/j.apor.2021.102610.

Adiputra, R., & Utsunomiya, T. (2022). Finite Element Modelling Of Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe (CWP). Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (OMAE). doi:10.1115/OMAE2022-78135.

Habib, M. I., Adiputra, R., Prabowo, A. R., Erwandi, E., Muhayat, N., Yasunaga, T., Ehlers, S., & Braun, M. (2023). Internal flow effects in OTEC cold water pipe: Finite element modelling in frequency and time domain approaches. Ocean Engineering, 288(116056). doi:10.1016/j.oceaneng.2023.116056.

Adie, P. W., Prabowo, A. R., Muttaqie, T., Adiputra, R., Muhayat, N., Carvalho, H., & Huda, N. (2023). Non-linear assessment of cold water pipe (CWP) on the ocean thermal energy conversion (OTEC) installation under bending load. Procedia Structural Integrity, 47, 142–149. doi:10.1016/j.prostr.2023.07.005.

Adie, P. W., Adiputra, R., Prabowo, A. R., Erwandi, E., Muttaqie, T., Muhayat, N., & Huda, N. (2023). Assessment of the OTEC cold water pipe design under bending loading: A benchmarking and parametric study using finite element approach. Journal of the Mechanical Behavior of Materials, 32(1). doi:10.1515/jmbm-2022-0298.

McCallister, M., Switzer, T., Arnold, F., & Ericksen, T. (2010). Geophysical and oceanographic site survey requirements for Ocean Thermal Energy Conversion (OTEC) installations. OCEANS 2010 MTS/IEEE, Seattle, United States. doi:10.1109/oceans.2010.5664488.

Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., … Willis, J. K. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics, 51(3), 450–483. doi:10.1002/rog.20022.

Samsuri, N., Shaikh Salim, S. A. Z., Musa, M. N., & Mat Ali, M. S. (2016). Modelling Performance Of Ocean-Thermal Energy Conversion Cycle According To Different Working Fluids. Jurnal Teknologi, 78(11). doi:10.11113/.v78.8741.

Liu, W., Xu, X., Chen, F., Liu, Y., Li, S., Liu, L., & Chen, Y. (2020). A review of research on the closed thermodynamic cycles of ocean thermal energy conversion. Renewable and Sustainable Energy Reviews, 119. doi:10.1016/j.rser.2019.109581.

Avery, W. H., & Wu, C. (1994). Renewable energy from the ocean: a guide to OTEC. Oxford university press, Oxford, United Kingdom. doi:10.1016/0029-8018(95)90035-7.

Eldred, M. P., Van Ryzin, J. C., Rizea, S., Chen, I. C., Loudon, R., Nagurny, N. J., Maurer, S., Jansen, E., Plumb, A., Eller, M. R., & Brown, V. R. R. (2011). Heat exchanger development for Ocean Thermal Energy Conversion. OCEANS’11 MTS/IEEE KONA, Waikoloa, United States. doi:10.23919/oceans.2011.6107175.

Fontaine, K., Yasunaga, T., & Ikegami, Y. (2019). OTEC maximum net power output using carnot cycle and application to simplify heat exchanger selection. Entropy, 21(12). doi:10.3390/e21121143.

Thirugnana, S. T., Jaafar, A. B., Rajoo, S., Azmi, A. A., Karthikeyan, H. J., Yasunaga, T., Nakaoka, T., Kamyab, H., Chelliapan, S., & Ikegami, Y. (2023). Performance Analysis of a 10 MW Ocean Thermal Energy Conversion Plant Using Rankine Cycle in Malaysia. Sustainability (Switzerland), 15(4), 3777. doi:10.3390/su15043777.

Langer, J., Cahyaningwidi, A. A., Chalkiadakis, C., Quist, J., Hoes, O., & Blok, K. (2021). Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology. Energy, 224, 224. doi:10.1016/

Samsuri, N., Sazali, N., Jamaludin, A. S., & Razali, M. N. M. (2021). Techno-economic efficiencies and environmental criteria of Ocean Thermal Energy Conversion closed Rankine cycle using different working fluids. IOP Conference Series: Materials Science and Engineering, 1062(1), 012042. doi:10.1088/1757-899X/1062/1/012042.

Lee, B, Wang, Z., & Gong, N. (2022). A Study on Performance of Rankine Cycle Used in OTEC Power Plant. SSRN Electronic Journal. doi:10.2139/ssrn.4112974.

Nakaoka, T., & Uehara, H. (1988). Performance test of a shell-and-plate type evaporator for OTEC. Experimental Thermal and Fluid Science, 1(3), 283–291. doi:10.1016/0894-1777(88)90008-8.

Syamsuddin, M. L., Attamimi, A., Nugraha, A. P., Gibran, S., Afifah, A. Q., & Oriana, N. (2015). OTEC Potential in the Indonesian Seas. Energy Procedia, 65, 215–222. doi:10.1016/j.egypro.2015.01.028.

Yang, M. H., & Yeh, R. H. (2014). Analysis of optimization in an OTEC plant using organic Rankine cycle. Renewable Energy, 68, 25–34. doi:10.1016/j.renene.2014.01.029.

Ikegami, Y., Yasunaga, T., & Morisaki, T. (2018). Ocean Thermal Energy Conversion using double-stage Rankine Cycle. Journal of Marine Science and Engineering, 6(1). doi:10.3390/jmse6010021.

Dijoux, A., Sinama, F., Marc, O., & Castaing-Lasvignottes, J. (2019). Modelling and experimentation of heat exchangers for Ocean Thermal Energy Conversion during transient operation. Procedia Manufacturing, 35, 298–303. doi:10.1016/j.promfg.2019.05.043.

Sinama, F., Martins, M., Journoud, A., Marc, O., & Lucas, F. (2015). Thermodynamic analysis and optimization of a 10MW OTEC Rankine cycle in Reunion Island with the equivalent Gibbs system method and generic optimization program GenOpt. Applied Ocean Research, 53, 54–66. doi:10.1016/j.apor.2015.07.006.

Yasunaga, T., Fontaine, K., Morisaki, T., & Ikegami, Y. (2017). Performance evaluation of heat exchangers for application to ocean thermal energy conversion system. Performance Evaluation of Heat Exchangers for Application to Ocean Thermal Energy Conversion System, 22, 65-75.

Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. M. (2022). The Effect of Heat Exchanger Design on Heat transfer Rate and Temperature Distribution. Emerging Science Journal, 6(1), 128–137. doi:10.28991/ESJ-2022-06-01-010.

Yeh, R. H., Su, T. Z., & Yang, M. S. (2005). Maximum output of an OTEC power plant. Ocean Engineering, 32(5–6), 685–700. doi:10.1016/j.oceaneng.2004.08.011.

Hernández-Romero, I. M., Nápoles-Rivera, F., Flores-Tlacuahuac, A., & Fuentes-Cortés, L. F. (2020). Optimal design of the ocean thermal energy conversion systems involving weather and energy demand variations. Chemical Engineering and Processing - Process Intensification, 157. doi:10.1016/j.cep.2020.108114.

Herrera, J., Sierra, S., Hernández-Hamón, H., Ardila, N., Franco-Herrera, A., & Ibeas, A. (2022). Economic Viability Analysis for an OTEC Power Plant at San Andrés Island. Journal of Marine Science and Engineering, 10(6). doi:10.3390/jmse10060713.

Ganic, E. N., & Wu, J. (1979). Comparative study of working fluids for OTEC power plants (No. ANL/OTEC-TM-1). Department of Energy Engineering, University of Chicago, Chicago, United States.

Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S., & Tsai, K. F. (2010). A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy, 35(3), 1403–1411. doi:10.1016/

Sun, F., Ikegami, Y., Jia, B., & Arima, H. (2012). Optimization design and exergy analysis of organic rankine cycle in ocean thermal energy conversion. Applied Ocean Research, 35, 38–46. doi:10.1016/j.apor.2011.12.006.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., & Konyushkov, E. I. (2023). Thrust Vector Control within a Geometric Sphere, and the Use of Euler's Tips to Create Jet Technology. Civil Engineering Journal, 9(10), 2516-2534. doi:10.28991/CEJ-2023-09-10-011.

Yang, M. H., & Yeh, R. H. (2014). Analysis of optimization in an OTEC plant using organic Rankine cycle. Renewable Energy, 68, 25–34. doi:10.1016/j.renene.2014.01.029.

Full Text: PDF

DOI: 10.28991/ESJ-2024-08-02-04


  • There are currently no refbacks.

Copyright (c) 2024 Rasgianti Rasgianti, Ristiyanto Adiputra, Ariyana Dwiputra Nugraha, Erwandi Erwandi, Ruly Bayu Sitanggang, Wahyu Widodo Pandoe, Aprijanto Aprijanto, Takeshi Yasunaga