Analysis of the Heating of Steel Structures During Fire Load
Abstract
Doi: 10.28991/ESJ-2024-08-01-01
Full Text: PDF
Keywords
References
KSH. (2024). Accidents at work, accidents at home and fires, Hungarian Central Statistical Office, Budapest, Hungary. Available online: https://www.ksh.hu/stadat_files/ege/hu/ege0042.html (accessed on January 2024). (In Hungarian).
MABISZ. (2022). Last year, insurance companies paid HUF 6.5 billion for fire damage. Association of Hungarian Insurance Companies (MABISZ), Budapest, Hungary. Available online: https://mabisz.hu/tuzkarokra-65-milliard-forintot-fizettek-ki-tavaly-a-biztositok/ (accessed on January 2024). (In Hungarian)
Didenko, I., Valaskova, K., Artyukhov, A., Lyeonov, S., & Vasa, L. (2022). Quality of Scientific Activity as a Determinant of Socio-Economic Development. Economics and Sociology, 15(3), 301–318. doi:10.14254/2071-789X.2022/15-3/17.
MSZ EN 1993-1-2:2013. (2013). Eurocode 3: Design of steel structures, part 1-2: General rules. Design of structures to fire, Magyar Szabványügyi Testület (MSZT), Budapest, Hungary.
The Steel Construction Institute (SCI). (2021). Design manual for structural stainless steel (4th Ed.). The Steel Construction Institute (SCI), Berkshire, United Kingdom.
MSZ EN 1991-1-2:2005. (2005). Eurocode 1: Effects on structures, Part 1-2: General effects. Effects on structures exposed to fire. Magyar Szabványügyi Testület (MSZT), Budapest, Hungary.
Nemer, S., Szalai, J. A., & Papp, F. (2023). The overall imperfection method for fire design situation. Engineering Structures, 283. doi:10.1016/j.engstruct.2023.115884.
Szalai, J., Nemer, S., & Papp, F. (2021). The use of the Overall Imperfection Method for fire design situation. SSRN Electronic Journal: Proceedings of the 8th International Conference on Coupled Instabilities in Metal Structures (CIMS 2021), Lodz University of Technology, Poland. doi:10.2139/ssrn.3866475.
Nemer, S., & Papp, F. (2021). Numerical investigation on flexural buckling behavior of hot-rolled steel columns at elevated temperatures. Periodica Polytechnica Civil Engineering, 65(3), 918–927. doi:10.3311/PPci.17799.
Nemer, S., & Papp, F. (2021). Influence of imperfections in the buckling resistance of steel beam-columns under fire. Pollack Periodica, 16(2), 1–6. doi:10.1556/606.2021.00303.
Majorosné, L. É. E., & Major, Z. (2023). Thermal testing of tunnel masonry (Part 1) Theoretical foundations. Sínek Világa, 3, 14–23. (In Hungarian).
Lublóy, É., & Major, Z. (2023). Thermal testing of tunnel masonry (Part 2) Practical knowledge. Sínek Világa, LXV(5), 2–8. (In Hungarian).
Lublóy, É., & Major, Z. (2023). Thermal testing of tunnel masonry (Part 3) Passive fire protection. Sínek Világa, LXV(6), 2–8. (In Hungarian).
Franssen, J. M., & Real, P. V. (2016). Fire Design of Steel Structures: EC1: Actions on structures; Part 1-2: Actions on structure exposed to fire; EC3: Design of steel structures; Part 1-2: Structural fire design. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783433601570.
Lublóy, É., Major, Z., Szép, J., Hlavicka, V., & Biró, A. (2023). Dimensioning for fire load according to Eurocode Design of reinforced concrete, steel, wood, masonry and mule structures. TERC Kereskedelmi és Szolgáltató Kft, Budapest, Hungary.
Lublóy, É., Kaczur, A., Huszár, Z., & Csanaky, J. (2023). Application of combined fire protection for steel structures. Védelem Tudomány: Katasztrófavédelmi Online Tudományos Folyóirat, 7(2), 1–18. (In Hungarian).
Jirku, J., & Wald, F. (2015). Influence of Zinc coating to a temperature of steel members in fire. Journal of Structural Fire Engineering, 6(2), 141–146. doi:10.1260/2040-2317.6.2.141.
Regina, S. (2021). Application and design of fire protection systems. Lecture of the Chamber of Engineering Training, Budapest, Hungary.
Györgyi, B. (2021). Fire protection of steel structures with fire retardant paints - failure after failure? Available online: http://www.vedelem.hu/letoltes/anyagok/872-acelszerkezetek-tuzvedelme-tuzvedo-festekekkel-%E2%80%93-hibat-hibara.pdf (accessed on January 2024). (In Hungarian).
Król, P. A. (2017). Practical fire safety assessment of steel-beam floors made according to the old technologies – An exemplary case study. Influence of the initial assumptions on the final results of analyses. Periodica Polytechnica Civil Engineering, 61(4), 857–872. doi:10.3311/PPci.9662.
FIN Software (2024). Structural Software FIN EC, Heat Transfer, Prague, Czech Republic. Available online: https://www.finesoftware.eu/structural-analyses/heat-transfer/ (accessed on January 2024).
DOI: 10.28991/ESJ-2024-08-01-01
Refbacks
- There are currently no refbacks.