Product Design Cost Estimation for Make-to-Order Industry: A Machine Learning Approach
Abstract
Doi: 10.28991/ESJ-2024-08-03-022
Full Text: PDF
Keywords
References
Quintana, G., & Ciurana, J. (2011). Cost estimation support tool for vertical high speed machines based on product characteristics and productivity requirements. International Journal of Production Economics, 134(1), 188–195. doi:10.1016/j.ijpe.2011.06.013.
Niazi, A., Dai, J. S., Balabani, S., & Seneviratne, L. (2006). Product cost estimation: Technique classification and methodology review. Journal of Manufacturing Science and Engineering, 128(2), 563–575. doi:10.1115/1.2137750.
Saravi, M., Newnes, L., Mileham, A. R., & Goh, Y. M. (2008). Estimating cost at the conceptual design stage to optimize design in terms of performance and cost. Collaborative Product and Service Life Cycle Management for a Sustainable World - Proceedings of the 15th ISPE International Conference on Concurrent Engineering (CE 2008), 123–130. doi:10.1007/978-1-84800-972-1_11.
Bendul, J., & Apostu, V. (2017). An Accuracy Investigation of Product Cost Estimation in Automotive Die Manufacturing. International Journal of Business Administration, 8(7), 1-15. doi:10.5430/ijba.v8n7p1.
Ievtushenko, O., & Hodge, G. L. (2012). Review of Cost Estimation Techniques and Their Strategic Importance in the New Product Development Process of Textile Products. Research Journal of Textile and Apparel, 16(1), 103–124. doi:10.1108/RJTA-16-01-2012-B012.
Zhu, G. N., Hu, J., & Ren, H. (2020). A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments. Applied Soft Computing Journal, 91, 106228. doi:10.1016/j.asoc.2020.106228.
Holliman, A., Thomson, A., & Hird, A. (2021). Estimating design effort needs of product design projects using captured expert knowledge – A proposed method. Proceedings of the Design Society, 1, 1391–1400. doi:10.1017/pds.2021.139.
Cai, X., & Tyagi, S. (2014). Development of a Product Life-Cycle Cost Estimation Model to Support Engineering Decision-Making in a Multi-Generational Product Development Environment. Journal of Cost Analysis and Parametrics, 7(3), 219–235. doi:10.1080/1941658x.2014.982403.
Sajid, M., Wasim, A., Hussain, S., & Jahanzaib, M. (2018). Manufacturing feature-based cost estimation of cast parts. China Foundry, 15(6), 464–469. doi:10.1007/s41230-018-8084-4.
Salmi, A., David, P., Blanco, E., & Summers, J. D. (2016). A review of cost estimation models for determining assembly automation level. Computers and Industrial Engineering, 98, 246–259. doi:10.1016/j.cie.2016.06.007.
Dewhurst, P., & Boothroyd, G. (1988). Early cost estimating in product design. Journal of Manufacturing Systems, 7(3), 183–191. doi:10.1016/0278-6125(88)90003-9.
Zhang, J., Chu, X., Simeone, A., & Gu, P. (2021). Machine learning-based design features decision support tool via customers purchasing data analysis. Concurrent Engineering Research and Applications, 29(2), 124–141. doi:10.1177/1063293X20963313.
Kurasova, O., Marcinkevičius, V., Medvedev, V., & Mikulskienė, B. (2021). Early Cost Estimation in Customized Furniture Manufacturing Using Machine Learning. International Journal of Machine Learning and Computing, 11(1), 28–33. doi:10.18178/ijmlc.2021.11.1.1010.
Bodendorf, F., & Franke, J. (2021). A machine learning approach to estimate product costs in the early product design phase: A use case from the automotive industry. Procedia CIRP, 100, 643–648. doi:10.1016/j.procir.2021.05.137.
Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166(15), 114060. doi:10.1016/j.eswa.2020.114060.
Balal, A., Jafarabadi, Y. P., Demir, A., Igene, M., Giesselmann, M., & Bayne, S. (2023). Forecasting Solar Power Generation Utilizing Machine Learning Models in Lubbock. Emerging Science Journal, 7(4), 1052–1062. doi:10.28991/ESJ-2023-07-04-02.
Antonopoulou, H., Theodorakopoulos, L., Halkiopoulos, C., & Mamalougkou, V. (2023). Utilizing Machine Learning to Reassess the Predictability of Bank Stocks. Emerging Science Journal, 7(3), 724–732. doi:10.28991/ESJ-2023-07-03-04.
Rapaccini, M., Cadonna, V. L., Leoni, L., & De Carlo, F. (2023). Application of machine learning techniques for cost estimation of engineer to order products. International Journal of Production Research, 61(20), 6978–7000. doi:10.1080/00207543.2022.2141907.
Molcho, G., Cristal, A., & Shpitalni, M. (2014). Part cost estimation at early design phase. CIRP Annals - Manufacturing Technology, 63(1), 153–156. doi:10.1016/j.cirp.2014.03.107.
Bode, J. (2000). Neural networks for cost estimation: Simulations and pilot application. International Journal of Production Research, 38(6), 1231–1254. doi:10.1080/002075400188825.
Qian, L., & Ben-Arieh, D. (2008). Parametric cost estimation based on activity-based costing: A case study for design and development of rotational parts. International Journal of Production Economics, 113(2), 805–818. doi:10.1016/j.ijpe.2007.08.010.
Manuguerra, L., Mandolini, M., Germani, M., & Sartini, M. (2023). Machine Learning for Parametric Cost Estimation of Axisymmetric Components. Proceedings of the Design Society, 3, 2485–2494. doi:10.1017/pds.2023.249.
Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820. doi:10.1016/j.eswa.2021.114820.
Durodola, J. F. (2022). Machine learning for design, phase transformation and mechanical properties of alloys. Progress in Materials Science, 123(August 2020), 100797. doi:10.1016/j.pmatsci.2021.100797.
Cavalieri, S., Maccarrone, P., & Pinto, R. (2004). Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry. International Journal of Production Economics, 91(2), 165–177. doi:10.1016/j.ijpe.2003.08.005.
Yeh, T. H., & Deng, S. (2012). Application of machine learning methods to cost estimation of product life cycle. International Journal of Computer Integrated Manufacturing, 25(4–5), 340–352. doi:10.1080/0951192X.2011.645381.
Loyer, J. L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components. International Journal of Production Economics, 178, 109–119. doi:10.1016/j.ijpe.2016.05.006.
Leszczyński, Z., & Jasiński, T. (2020). Comparison of product life cycle cost estimating models based on neural networks and parametric techniques—a case study for induction motors. Sustainability, 12(20), 1–14. doi:10.3390/su12208353.
Ning, F., Shi, Y., Cai, M., Xu, W., & Zhang, X. (2020). Manufacturing cost estimation based on a deep-learning method. Journal of Manufacturing Systems, 54, 186–195. doi:10.1016/j.jmsy.2019.12.005.
Ning, F., Shi, Y., Cai, M., Xu, W., & Zhang, X. (2020). Manufacturing cost estimation based on the machining process and deep-learning method. Journal of Manufacturing Systems, 56, 11–22. doi:10.1016/j.jmsy.2020.04.011.
Yoo, S., & Kang, N. (2021). Explainable artificial intelligence for manufacturing cost estimation and machining feature visualization. Expert Systems with Applications, 183, 115430. doi:10.1016/j.eswa.2021.115430.
Bodendorf, F., Merbele, S., & Franke, J. (2022). Deep learning based cost estimation of circuit boards: a case study in the automotive industry. International Journal of Production Research, 60(23), 6945–6966. doi:10.1080/00207543.2021.1998698.
Zhang, H., Wang, W., Zhang, S., Huang, B., Zhang, Y., Wang, M., Liang, J., & Wang, Z. (2022). A novel method based on a convolutional graph neural network for manufacturing cost estimation. Journal of Manufacturing Systems, 65, 837–852. doi:10.1016/j.jmsy.2022.10.007.
Klocker, F., Bernsteiner, R., Ploder, C., & Nocker, M. (2023). A Machine Learning Approach for Automated Cost Estimation of Plastic Injection Molding Parts. Cloud Computing and Data Science, 4(2), 87–111. doi:10.37256/ccds.4220232277.
Hammann, D. (2024). Big data and machine learning in cost estimation: An automotive case study. International Journal of Production Economics, 269, 109–137. doi:10.1016/j.ijpe.2023.109137.
Heaton, J. (2015). Deep learning and neural networks. Machine Learning and Visual Perception. De Gruyter Brill, Berlin, Germany. doi:10.1515/9783110595567-010.
Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. Ruder.io, Berlin, Germany. Available online: https://www.ruder.io/optimizing-gradient-descent/ (accessed on February 2024).
Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural networks: Tricks of the trade: Second edition. Springer, Berlin, Germany.
Zulkifli, H. (2018). Understanding Learning Rates and How It Improves Performance in Deep Learning. Medium, California, United States. Available online: https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10 (accessed on February 2024).
Zhang, F., & O’Donnell, L. J. (2020). Support vector regression. Machine Learning, 123–140, Academic Press, Massachusetts, United States. doi:10.1016/b978-0-12-815739-8.00007-9.
Tang, Z., Yin, H., Yang, C., Yu, J., & Guo, H. (2021). Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression. Sustainable Cities and Society, 66(2), 1–14. doi:10.1016/j.scs.2020.102690.
Laref, R., Losson, E., Sava, A., & Siadat, M. (2019). On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemometrics and Intelligent Laboratory Systems, 184, 22–27. doi:10.1016/j.chemolab.2018.11.011.
DOI: 10.28991/ESJ-2024-08-03-022
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Anas Ma'ruf