Product Design Cost Estimation for Make-to-Order Industry: A Machine Learning Approach

Anas Ma'ruf, Raden A. C. Leuveano, Rizky Utama

Abstract


This research addresses the need for accurate design cost estimation in the Make-To-Order (MTO) industry. The complexity of product customization is key to differentiation. While many studies focus on manufacturing cost estimation, few explore design cost estimation. To improve the accuracy of design cost estimation, this research proposes a new cost driver based on design features available in Computer-Aided Design (CAD) data. The design feature is analyzed to the actual industry cost using machine learning methods, including Artificial Neural Networks (ANNs) and Support Vector Regression (SVR). The cost drivers identified as significant consisted of twenty-six 3D CAD features and four 2D CAD features. The results showed that the ANN models outperformed the SVR models in correctly estimating product design costs, as evidenced by the high R2values in the training and testing phases. The proposed method allows early identification of cost drivers, a significant advantage at the order initiation stage when detailed design features are often ambiguous. The novelty of this research is the use of 3D CAD technology for cost estimation, which quantifies costs based on product design complexity, providing valuable insights into the impact of design adjustments on costs early in the design process.

 

Doi: 10.28991/ESJ-2024-08-03-022

Full Text: PDF


Keywords


Cost Estimation; 3D-CAD; Machine Learning; Artificial Neural Network; Support Vector Regression.

References


Quintana, G., & Ciurana, J. (2011). Cost estimation support tool for vertical high speed machines based on product characteristics and productivity requirements. International Journal of Production Economics, 134(1), 188–195. doi:10.1016/j.ijpe.2011.06.013.

Niazi, A., Dai, J. S., Balabani, S., & Seneviratne, L. (2006). Product cost estimation: Technique classification and methodology review. Journal of Manufacturing Science and Engineering, 128(2), 563–575. doi:10.1115/1.2137750.

Saravi, M., Newnes, L., Mileham, A. R., & Goh, Y. M. (2008). Estimating cost at the conceptual design stage to optimize design in terms of performance and cost. Collaborative Product and Service Life Cycle Management for a Sustainable World - Proceedings of the 15th ISPE International Conference on Concurrent Engineering (CE 2008), 123–130. doi:10.1007/978-1-84800-972-1_11.

Bendul, J., & Apostu, V. (2017). An Accuracy Investigation of Product Cost Estimation in Automotive Die Manufacturing. International Journal of Business Administration, 8(7), 1-15. doi:10.5430/ijba.v8n7p1.

Ievtushenko, O., & Hodge, G. L. (2012). Review of Cost Estimation Techniques and Their Strategic Importance in the New Product Development Process of Textile Products. Research Journal of Textile and Apparel, 16(1), 103–124. doi:10.1108/RJTA-16-01-2012-B012.

Zhu, G. N., Hu, J., & Ren, H. (2020). A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments. Applied Soft Computing Journal, 91, 106228. doi:10.1016/j.asoc.2020.106228.

Holliman, A., Thomson, A., & Hird, A. (2021). Estimating design effort needs of product design projects using captured expert knowledge – A proposed method. Proceedings of the Design Society, 1, 1391–1400. doi:10.1017/pds.2021.139.

Cai, X., & Tyagi, S. (2014). Development of a Product Life-Cycle Cost Estimation Model to Support Engineering Decision-Making in a Multi-Generational Product Development Environment. Journal of Cost Analysis and Parametrics, 7(3), 219–235. doi:10.1080/1941658x.2014.982403.

Sajid, M., Wasim, A., Hussain, S., & Jahanzaib, M. (2018). Manufacturing feature-based cost estimation of cast parts. China Foundry, 15(6), 464–469. doi:10.1007/s41230-018-8084-4.

Salmi, A., David, P., Blanco, E., & Summers, J. D. (2016). A review of cost estimation models for determining assembly automation level. Computers and Industrial Engineering, 98, 246–259. doi:10.1016/j.cie.2016.06.007.

Dewhurst, P., & Boothroyd, G. (1988). Early cost estimating in product design. Journal of Manufacturing Systems, 7(3), 183–191. doi:10.1016/0278-6125(88)90003-9.

Zhang, J., Chu, X., Simeone, A., & Gu, P. (2021). Machine learning-based design features decision support tool via customers purchasing data analysis. Concurrent Engineering Research and Applications, 29(2), 124–141. doi:10.1177/1063293X20963313.

Kurasova, O., Marcinkevičius, V., Medvedev, V., & Mikulskienė, B. (2021). Early Cost Estimation in Customized Furniture Manufacturing Using Machine Learning. International Journal of Machine Learning and Computing, 11(1), 28–33. doi:10.18178/ijmlc.2021.11.1.1010.

Bodendorf, F., & Franke, J. (2021). A machine learning approach to estimate product costs in the early product design phase: A use case from the automotive industry. Procedia CIRP, 100, 643–648. doi:10.1016/j.procir.2021.05.137.

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166(15), 114060. doi:10.1016/j.eswa.2020.114060.

Balal, A., Jafarabadi, Y. P., Demir, A., Igene, M., Giesselmann, M., & Bayne, S. (2023). Forecasting Solar Power Generation Utilizing Machine Learning Models in Lubbock. Emerging Science Journal, 7(4), 1052–1062. doi:10.28991/ESJ-2023-07-04-02.

Antonopoulou, H., Theodorakopoulos, L., Halkiopoulos, C., & Mamalougkou, V. (2023). Utilizing Machine Learning to Reassess the Predictability of Bank Stocks. Emerging Science Journal, 7(3), 724–732. doi:10.28991/ESJ-2023-07-03-04.

Rapaccini, M., Cadonna, V. L., Leoni, L., & De Carlo, F. (2023). Application of machine learning techniques for cost estimation of engineer to order products. International Journal of Production Research, 61(20), 6978–7000. doi:10.1080/00207543.2022.2141907.

Molcho, G., Cristal, A., & Shpitalni, M. (2014). Part cost estimation at early design phase. CIRP Annals - Manufacturing Technology, 63(1), 153–156. doi:10.1016/j.cirp.2014.03.107.

Bode, J. (2000). Neural networks for cost estimation: Simulations and pilot application. International Journal of Production Research, 38(6), 1231–1254. doi:10.1080/002075400188825.

Qian, L., & Ben-Arieh, D. (2008). Parametric cost estimation based on activity-based costing: A case study for design and development of rotational parts. International Journal of Production Economics, 113(2), 805–818. doi:10.1016/j.ijpe.2007.08.010.

Manuguerra, L., Mandolini, M., Germani, M., & Sartini, M. (2023). Machine Learning for Parametric Cost Estimation of Axisymmetric Components. Proceedings of the Design Society, 3, 2485–2494. doi:10.1017/pds.2023.249.

Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820. doi:10.1016/j.eswa.2021.114820.

Durodola, J. F. (2022). Machine learning for design, phase transformation and mechanical properties of alloys. Progress in Materials Science, 123(August 2020), 100797. doi:10.1016/j.pmatsci.2021.100797.

Cavalieri, S., Maccarrone, P., & Pinto, R. (2004). Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry. International Journal of Production Economics, 91(2), 165–177. doi:10.1016/j.ijpe.2003.08.005.

Yeh, T. H., & Deng, S. (2012). Application of machine learning methods to cost estimation of product life cycle. International Journal of Computer Integrated Manufacturing, 25(4–5), 340–352. doi:10.1080/0951192X.2011.645381.

Loyer, J. L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components. International Journal of Production Economics, 178, 109–119. doi:10.1016/j.ijpe.2016.05.006.

Leszczyński, Z., & Jasiński, T. (2020). Comparison of product life cycle cost estimating models based on neural networks and parametric techniques—a case study for induction motors. Sustainability, 12(20), 1–14. doi:10.3390/su12208353.

Ning, F., Shi, Y., Cai, M., Xu, W., & Zhang, X. (2020). Manufacturing cost estimation based on a deep-learning method. Journal of Manufacturing Systems, 54, 186–195. doi:10.1016/j.jmsy.2019.12.005.

Ning, F., Shi, Y., Cai, M., Xu, W., & Zhang, X. (2020). Manufacturing cost estimation based on the machining process and deep-learning method. Journal of Manufacturing Systems, 56, 11–22. doi:10.1016/j.jmsy.2020.04.011.

Yoo, S., & Kang, N. (2021). Explainable artificial intelligence for manufacturing cost estimation and machining feature visualization. Expert Systems with Applications, 183, 115430. doi:10.1016/j.eswa.2021.115430.

Bodendorf, F., Merbele, S., & Franke, J. (2022). Deep learning based cost estimation of circuit boards: a case study in the automotive industry. International Journal of Production Research, 60(23), 6945–6966. doi:10.1080/00207543.2021.1998698.

Zhang, H., Wang, W., Zhang, S., Huang, B., Zhang, Y., Wang, M., Liang, J., & Wang, Z. (2022). A novel method based on a convolutional graph neural network for manufacturing cost estimation. Journal of Manufacturing Systems, 65, 837–852. doi:10.1016/j.jmsy.2022.10.007.

Klocker, F., Bernsteiner, R., Ploder, C., & Nocker, M. (2023). A Machine Learning Approach for Automated Cost Estimation of Plastic Injection Molding Parts. Cloud Computing and Data Science, 4(2), 87–111. doi:10.37256/ccds.4220232277.

Hammann, D. (2024). Big data and machine learning in cost estimation: An automotive case study. International Journal of Production Economics, 269, 109–137. doi:10.1016/j.ijpe.2023.109137.

Heaton, J. (2015). Deep learning and neural networks. Machine Learning and Visual Perception. De Gruyter Brill, Berlin, Germany. doi:10.1515/9783110595567-010.

Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. Ruder.io, Berlin, Germany. Available online: https://www.ruder.io/optimizing-gradient-descent/ (accessed on February 2024).

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural networks: Tricks of the trade: Second edition. Springer, Berlin, Germany.

Zulkifli, H. (2018). Understanding Learning Rates and How It Improves Performance in Deep Learning. Medium, California, United States. Available online: https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10 (accessed on February 2024).

Zhang, F., & O’Donnell, L. J. (2020). Support vector regression. Machine Learning, 123–140, Academic Press, Massachusetts, United States. doi:10.1016/b978-0-12-815739-8.00007-9.

Tang, Z., Yin, H., Yang, C., Yu, J., & Guo, H. (2021). Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression. Sustainable Cities and Society, 66(2), 1–14. doi:10.1016/j.scs.2020.102690.

Laref, R., Losson, E., Sava, A., & Siadat, M. (2019). On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemometrics and Intelligent Laboratory Systems, 184, 22–27. doi:10.1016/j.chemolab.2018.11.011.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-03-022

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anas Ma'ruf