Crop Detection and Maturity Classification Using a YOLOv5-Based Image Analysis
Abstract
Doi: 10.28991/ESJ-2024-08-02-08
Full Text: PDF
Keywords
References
Hou, X., Li, J., Yin, S., & Yuan, H. (2022). Evolution of Agricultural Innovation Ecosystem in County Areas: A Life-Cycle Perspective of Cases in Hebei Province. Mathematical Problems in Engineering, 2022, 1–21. doi:10.1155/2022/5262248.
Godfray, H. C. J., Crute, I. R., Haddad, L., Muir, J. F., Nisbett, N., Lawrence, D., Pretty, J., Robinson, S., Toulmin, C., & Whiteley, R. (2010). The future of the global food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2769–2777. doi:10.1098/rstb.2010.0180.
Durán, Y., Gómez-Valenzuela, V., & Ramírez, K. (2023). Socio-technical transitions and sustainable agriculture in Latin America and the Caribbean: a systematic review of the literature 2010–2021. Frontiers in Sustainable Food Systems, 7, 1-13. doi:10.3389/fsufs.2023.1145263.
Sharma, R. (2021). Artificial Intelligence in Agriculture: A Review. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India. doi:10.1109/iciccs51141.2021.9432187.
Li, J., Chen, D., Qi, X., Li, Z., Huang, Y., Morris, D., & Tan, X. (2023). Label-efficient learning in agriculture: A comprehensive review. Computers and Electronics in Agriculture, 215, 108412. doi:10.1016/j.compag.2023.108412.
Bharman, P., Ahmad Saad, S., Khan, S., Jahan, I., Ray, M., & Biswas, M. (2022). Deep Learning in Agriculture: A Review. Asian Journal of Research in Computer Science, 13(2), 28–47. doi:10.9734/ajrcos/2022/v13i230311.
Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 3758. doi:10.3390/s21113758.
Mukhiddinov, M., Muminov, A., & Cho, J. (2022). Improved Classification Approach for Fruits and Vegetables Freshness Based on Deep Learning. Sensors, 22(21), 8192. doi:10.3390/s22218192.
Dubey, S. R., & Jalal, A. S. (2013). Species and variety detection of fruits and vegetables from images. International Journal of Applied Pattern Recognition, 1(1), 108. doi:10.1504/ijapr.2013.052343.
Tripathi, M. K., & Maktedar, D. D. (2021). Detection of various categories of fruits and vegetables through various descriptors using machine learning techniques. International Journal of Computational Intelligence Studies, 10(1), 36. doi:10.1504/ijcistudies.2021.113819.
Rahmadian, R., & Widyartono, M. (2020). Autonomous Robotic in Agriculture: A Review. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia. doi:10.1109/icvee50212.2020.9243253.
Abubeker, K. M., Akhil, S., VK, A. K., & Jose, B. K. (2023). Computer Vision Assisted Real-Time Bird Eye Chili Classification Using YOLO V5 Framework. Journal of Artificial Intelligence and Technology, 1-13. doi:10.37965/jait.2023.0251.
Habib, Md. T., Raza, D. M., Islam, Md. M., Victor, D. B., & Arif, Md. A. I. (2022). Applications of Computer Vision and Machine Learning in Agriculture: A State-of-the-Art Glimpse. 2022 International Conference on Innovative Trends in Information Technology (ICITIIT). doi:10.1109/icitiit54346.2022.9744150.
Badeka, E., Karapatzak, E., Karampatea, A., Bouloumpasi, E., Kalathas, I., Lytridis, C., Tziolas, E., Tsakalidou, V. N., & Kaburlasos, V. G. (2023). A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7. Sensors, 23(19). doi:10.3390/s23198126.
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066–1073. doi:10.1016/j.procs.2022.01.135.
Li, Y., Feng, X., Liu, Y., & Han, X. (2021). Apple quality identification and classification by image processing based on convolutional neural networks. Scientific Reports, 11(1), 16618. doi:10.1038/s41598-021-96103-2.
Xuan, G., Gao, C., Shao, Y., Zhang, M., Wang, Y., Zhong, J., Li, Q., & Peng, H. (2020). Apple Detection in Natural Environment Using Deep Learning Algorithms. IEEE Access, 8, 216772–216780. doi:10.1109/ACCESS.2020.3040423.
Xiao, J.-R., Chung, P.-C., Wu, H.-Y., Phan, Q.-H., Yeh, J.-L. A., & Hou, M. T.-K. (2020). Detection of Strawberry Diseases Using a Convolutional Neural Network. Plants, 10(1), 31. doi:10.3390/plants10010031.
Patil, A., & Lad, K. (2021). Chili Plant Leaf Disease Detection Using SVM and KNN Classification. Rising Threats in Expert Applications and Solutions. Advances in Intelligent Systems and Computing, 1187. Springer, Singapore. doi:10.1007/978-981-15-6014-9_26.
Khalid, M., Sarfraz, M. S., Iqbal, U., Aftab, M. U., Niedbała, G., & Rauf, H. T. (2023). Real-Time Plant Health Detection Using Deep Convolutional Neural Networks. Agriculture (Switzerland), 13(2), 2–16. doi:10.3390/agriculture13020510.
Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology, 3, 2772–3775. doi:10.1016/j.atech.2022.100083.
Islam, N., Rashid, M. M., Wibowo, S., Xu, C. Y., Morshed, A., Wasimi, S. A., Moore, S., & Rahman, S. M. (2021). Early weed detection using image processing and machine learning techniques in an Australian Chilli farm. Agriculture (Switzerland), 11(5), 1–13. doi:10.3390/agriculture11050387.
Manish Lad, A., Mani Bharathi, K., Akash Saravanan, B., & Karthik, R. (2022). Factors affecting agriculture and estimation of crop yield using supervised learning algorithms. Materials Today: Proceedings, 62(7), 4629–4634. doi:10.1016/j.matpr.2022.03.080.
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. doi:10.1016/j.compag.2018.02.016.
Solis-Charcopa, K. F., Quiroz-Ponce, F., Vernaza-Quiñonez, L. M., & Carrera-Villacrés, F. (2017). Biofertilizers an ecological alternative for agriculture in the face of climate change in Ecuador. Dominio de Las Ciencias, 3(4), 75–88. doi:10.23857/DOM.CIEN.POCAIP.2017.3.4.OCT.75-88. (In Spanish).
Jacob, A., Edward, E. O., & Yaw, B. O. A. (2016). Efficiency of chili pepper production in the Volta region of Ghana. Journal of Agricultural Extension and Rural Development, 8(6), 99–110. doi:10.5897/jaerd2016.0765.
Ekawaty, Y., Indrabayu, & Areni, I. S. (2019). Automatic Cacao Pod Detection under Outdoor Condition Using Computer Vision. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). doi:10.1109/icitisee48480.2019.9003733.
Sihombing, Y. F., Septiarini, A., Kridalaksana, A. H., & Puspitasari, N. (2022). Chili Classification Using Shape and Color Features Based on Image Processing. Scientific Journal of Informatics, 9(1), 42–50. doi:10.15294/sji.v9i1.33658.
Pang, F., & Chen, X. (2023). MS-YOLOv5: a lightweight algorithm for strawberry ripeness detection based on deep learning. Systems Science & Control Engineering, 11(1), 1–11. doi:10.1080/21642583.2023.2285292.
Liu, M., Wang, Y., Li, X., Han, W., & Chen, W. (2023). Multi-task Tomato Fruit and Bunch Maturity Detection Approach Based on Improved YOLOv7. 2023 IEEE 9th International Conference on Cloud Computing and Intelligent Systems (CCIS), Dali, China. doi:10.1109/ccis59572.2023.10262866.
Han, W., Hao, W., Sun, J., Xue, Y., & Li, W. (2022). Tomatoes Maturity Detection Approach Based on YOLOv5 and Attention Mechanisms. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China. doi:10.1109/iccasit55263.2022.9986640.
Yang, Y., Han, Y., Li, S., Li, H., & Zhang, M. (2022). Multi-Growth Period Tomato Fruit Detection Using Improved Yolov5. International Journal of Robotics and Automation Technology, 9, 44–55. doi:10.31875/2409-9694.2022.09.06.
Sun, L., Hu, G., Chen, C., Cai, H., Li, C., Zhang, S., & Chen, J. (2022). Lightweight Apple Detection in Complex Orchards Using YOLOV5-PRE. Horticulturae, 8(12), 1–15. doi:10.3390/horticulturae8121169.
Alharbi, A. G., & Arif, M. (2020). Detection And Classification of Apple Diseases using Convolutional Neural Networks. 2020 2nd International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia. doi:10.1109/iccis49240.2020.9257640.
Sharma, R., & Kukreja, V. (2022). Amalgamated convolutional long term network (CLTN) model for Lemon Citrus Canker Disease Multi-classification. 2022 International Conference on Decision Aid Sciences and Applications, DASA 2022, 326–329. doi:10.1109/DASA54658.2022.9765005.
Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Zhang, Y. D. (2020). Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks. Scientia Horticulturae, 263, 1–10. doi:10.1016/j.scienta.2019.109133.
Wang, Y., Yang, L., Chen, H., Hussain, A., Ma, C., & Al-gabri, M. (2022). Mushroom-YOLO: A deep learning algorithm for mushroom growth recognition based on improved YOLOv5 in agriculture 4.0. 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), Perth, Australia. doi:10.1109/indin51773.2022.9976155.
Sevilla, W. H., Hernandez, R. M., Ligayo, M. A. D., Costa, M. T., & Quismundo, A. Q. (2022). Machine Vision Recognition System of Edible and Poisonous Mushrooms Using a Small Training Set-Based Deep Transfer Learning. 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand. doi:10.1109/dasa54658.2022.9765046.
Behera, S. K., Rath, A. K., & Sethy, P. K. (2021). Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Information Processing in Agriculture, 8(2), 244–250. doi:10.1016/j.inpa.2020.05.003.
Islam, Md. A., Islam, Md. S., Hossen, Md. S., Emon, M. U., Keya, M. S., & Habib, A. (2020). Machine Learning based Image Classification of Papaya Disease Recognition. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India. doi:10.1109/iceca49313.2020.9297570.
Patil, A., & Lad, K. (2022). Feature Selection for Chili Leaf Disease Identification Using GLCM Algorithm. Smart Innovation, Systems and Technologies, 251, 359–365. doi:10.1007/978-981-16-3945-6_35.
Aminuddin, N. F., Joret, A., Zulkifli, S. A., Abdul Kadir, H., Morsin, M., & Tukiran, Z. (2023). Computational Approaches Based on Image Processingfor Automated Disease Identification on Chili Leaf Images: A Review. Emerging Advances in Integrated Technology, 3(2), 11–26. doi:10.30880/emait.2022.03.02.002.
Tan, J., Sutanto, B. C., Marvelim, D., Pratama, G. D., & Hasana, S. (2023). Chili Plant Health Status Classification Using Random Forest. 2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS), IPOH, Malaysia. doi:10.1109/aidas60501.2023.10284701.
Anbananthen, K. S. M., Subbiah, S., Baskar, S. G., Selvaraj, R., Krishnan, J., Kannan, S., & Chelliah, D. (2023). The Eye: A Light Weight Mobile Application for Visually Challenged People Using Improved YOLOv5l Algorithm. Emerging Science Journal, 7(5), 1636-1652. doi:10.28991/ESJ-2023-07-05-011.
Cruz-Domínguez, O., Carrera-Escobedo, J. L., Guzmán-Valdivia, C. H., Ortiz-Rivera, A., García-Ruiz, M., Durán-Muñoz, H. A., Vidales-Basurto, C. A., & Castaño, V. M. (2021). A novel method for dried chili pepper classification using artificial intelligence. Journal of Agriculture and Food Research, 3. doi:10.1016/j.jafr.2021.100099.
Aldabbagh, A. D. A., Hairu, C., & Hanafi, M. (2020). Classification of Chili Plant Growth using Deep Learning. 2020 IEEE 10th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia. doi:10.1109/icset51301.2020.9265351.
Saad, W. H. M., Karim, S. A. A., Razak, M. S. J. A., Radzi, S. A., & Yussof, Z. M. (2020). Classification and detection of chili and its flower using deep learning approach. Journal of Physics: Conference Series, 1502. doi:10.1088/1742-6596/1502/1/012055.
Purwaningsih, T., Anjani, I. A., & Utami, P. B. (2018). Convolutional Neural Networks Implementation for Chili Classification. International Symposium on Advanced Intelligent Informatics (SAIN), Yogyakarta, Indonesia. doi:10.1109/sain.2018.8673373.
Ram, P. P. V. S., Yaswanth, K. V. S., Kamepalli, S., Sankar, B. S., & Madupalli, M. (2023). Deep Learning Model YOLOv5 for Red Chilies Detection from Chilly Crop Images. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), Lonavla, India. doi:10.1109/i2ct57861.2023.10126327.
Yin, L. L., Zainudin, M. N. S., Saad, W. H. M., Sulaiman, N. A., Idris, M. I., Kamarudin, M. R., Mohamed, R., & Razak, M. S. J. A. (2023). Analysis Recognition of Ghost Pepper and Cili-Padi using Mask-RCNN and YOLO. Przeglad Elektrotechniczny, 2023(8), 92–97. doi:10.15199/48.2023.08.15.
Mayalekshmi, K. M., Ranjan, A., & Machavaram, R. (2023). In-field Chilli Crop Disease Detection Using YOLOv5 Deep Learning Technique. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), Lonavla, India. doi:10.1109/I2CT57861.2023.10126468.
Hing, Y. S., Wan, W. Y., & Nugroho, H. (2021). Objective Tool for Chili Grading Using Convolutional Neural Network and Color Analysis. In Advances in Robotics, Automation and Data Analytics: Selected Papers from iCITES 2020, 315-324. doi:10.1007/978-3-030-70917-4_30.
Ibrahim, M. F., Zainudin, M. S., Idris, M. I., Saad, W. M., Kamarudin, M. R., Sulaiman, N. A., & Mohamed, R. (2023). Detection and Classifying of Chili Fruits Variations using YOLOv5. KZYJC, 38(4), 1363-1376.
Zainudin, M. S., Azlan, M. S., Yin, L. L., Saad, W. M., Idris, M. I., Muhammad, S., & Razak, M. S. J. A. (2022). Analysis on localization and prediction of depth chili fruits images using YOLOv5. International Journal of Advanced Technology and Engineering Exploration, 9(97), 1786. doi:10.19101/IJATEE.2021.876501.
Tan, Z., Chen, B., Sun, L., Xu, H., Zhang, K., & Chen, F. (2023). Pepper Target Recognition and Detection Based on Improved YOLO v4. Information Technology and Control, 52(4), 878–886. doi:10.5755/j01.itc.52.4.34183.
Hespeler, S. C., Nemati, H., & Dehghan-Niri, E. (2021). Non-destructive thermal imaging for object detection via advanced deep learning for robotic inspection and harvesting of chili peppers. Artificial Intelligence in Agriculture, 5, 102–117. doi:10.1016/j.aiia.2021.05.003.
Manan, A. A. A., Razman, M. A. M., Khairuddin, I. M., & Shapiee, M. N. A. (2020). Chili Plant Classification using Transfer Learning models through Object Detection. Mekatronika, 2(2), 23-27. doi:10.1007/978-981-19-2095-0_46.
Sudianto, Herdiyeni, Y., Haristu, A., & Hardhienata, M. (2020). Chilli Quality Classification using Deep Learning. 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), Bogor, Indonesia. doi:10.1109/icosica49951.2020.9243176.
Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based on ensemble learning. Forests, 12(2), 217. doi:10.3390/f12020217.
Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., & Yeh, I.-H. (2020). CSPNet: A New Backbone that can Enhance Learning Capability of CNN. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, United States. doi:10.1109/cvprw50498.2020.00203.
Wang, K., Liew, J. H., Zou, Y., Zhou, D., & Feng, J. (2019). PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South). doi:10.1109/iccv.2019.00929.
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.
Aishwarya, N., Manoj Prabhakaran, K., Debebe, F. T., Reddy, M. S. S. A., & Pranavee, P. (2023). Skin Cancer diagnosis with Yolo Deep Neural Network. Procedia Computer Science, 220, 651–658. doi:10.1016/j.procs.2023.03.083.
DOI: 10.28991/ESJ-2024-08-02-08
Refbacks
- There are currently no refbacks.