Assessing the State of Modern Physics Education: Pre-test Findings and Influencing Factors

Talia Tene, Elba Bodero-Poveda, Diego Vique López, Cristian Vacacela Gomez, Stefano Bellucci

Abstract


Technology and our conceptions of reality have both been significantly impacted by modern physics. However, due to a variety of issues, such as disparities in educational resources, differing emphasis on science education, cultural attitudes, and language obstacles, students in Latin America, including Ecuador, have a limited understanding of modern physics. The present work exposes a pre-test methodology to evaluate students' knowledge and pinpoint their areas of weakness. The analysis of the results indicates that most students received lower grades, while a smaller proportion obtained higher scores. Our findings reveal significant knowledge gaps, misconceptions, and uncertainty among the participants regarding various topics related to the constituent and stability of the nucleus, quantum behavior, nuclear models, radioactive decay, and natural radioactive sources. Additionally, it was statistically demonstrated (Kruskal-Wallis H test) that misconceptions, uncertainties, and knowledge gaps are not significantly related to learning styles. The type of college substantially impacts academics, with private university students typically receiving higher grades. These results offer insightful information about student performance, how learning styles and college types affect academic achievement in modern physics, and the effects of living area and academic level.

 

Doi: 10.28991/ESJ-2024-SIED1-01

Full Text: PDF


Keywords


Modern Physics; Pre-test; Misconceptions; Learning Styles.

References


Bailey, J. (2022). History of the Atom, 1803–1932. Inventive Geniuses Who Changed the World. Springer, Cham, Switzerland. doi:10.1007/978-3-030-81381-9_8.

L’Annunziata, M. F. (2023). Birth of Modern Physics. Radioactivity, 115–167, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-323-90440-7.00002-8.

Salasnich, L. (2022). Modern Physics. In UNITEXT for Physics. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-93743-0.

Strikman, M., Spartalian, K., & Cole, M. W. (2014). Applications of Modern Physics in Medicine. Princeton University Press, Princeton, United States. doi:10.2307/j.ctv31r2rx7.

Göbel, E. O., & Siegner, U. (2015). Quantum Metrology: Foundation of Units and Measurements. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783527680887.

Zollmann, D. (1999). Research on teaching and learning quantum mechanics. Annual meeting National Association for Research in Science Teaching National Science Foundation, 28-31 March, 1999, Boston, United States.

Lobo, R. F., & Pinheiro, M. J. (2022). Advanced Topics in Contemporary Physics for Engineering: Nanophysics, Plasma Physics, and Electrodynamics. CRC Press, Boca Raton, United States. doi:10.1201/9781003285083.

Ikromjonovich, S. A. (2023). Teaching Physics Pedagogues to New Pedagogical Technologies in The Preparation of Bachelors. Horizon: Journal of Humanity and Artificial Intelligence, 2(4), 199-201..

Figliolia, M., Stabile, A., & Noce, C. (2020). Using applets to learn modern physics. Modern Physics, 18-1-18–11. IOP Publishing, Bristol, United Kingdom. doi:10.1088/978-0-7503-2678-0ch18.

Özcan, Ö. (2011). What are the students’ mental models about the “spin” and “photon” concepts in modern physics? Procedia - Social and Behavioral Sciences, 15, 1372–1375. doi:10.1016/j.sbspro.2011.03.295.

National Research Council. (2000). How People Learn: Brain, Mind, Experience, and School: Expanded Edition. The National Academies Press, Washington, United States. doi:10.17226/9853.

Putica, K. B. (2023). Development and Validation of a Four-Tier Test for the Assessment of Secondary School Students’ Conceptual Understanding of Amino Acids, Proteins, and Enzymes. Research in Science Education, 53(3), 651–668. doi:10.1007/s11165-022-10075-5.

Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39(10), 952–978. doi:10.1002/tea.10053.

Wilcox, B. R., & Lewandowski, H. J. (2016). Students’ epistemologies about experimental physics: Validating the Colorado Learning Attitudes about Science Survey for experimental physics. Physical Review Physics Education Research, 12(1), 10123. doi:10.1103/PhysRevPhysEducRes.12.010123.

Gunstone, R. F. (1987). Student understanding in mechanics: A large population survey. American Journal of Physics, 55(8), 691–696. doi:10.1119/1.15058.

Dori, Y. J., & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts? Journal of the Learning Sciences, 14(2), 243–279. doi:10.1207/s15327809jls1402_3.

Zhu, G., & Singh, C. (2012). Surveying students’ understanding of quantum mechanics in one spatial dimension. American Journal of Physics, 80(3), 252–259. doi:10.1119/1.3677653.

Podolak, K., & Danforth, J. (2013). Interactive Modern Physics Worksheets Methodology and Assessment. European Journal of Physics Education, 4(2), 27-31.

Halim, A., Nurhasanah, Zainuddin, Musdar, Elisa, Mahzum, E., & Irwandi, I. (2021). Student’s misconception and thinking style on modern physics course. Journal of Physics: Conference Series, 1882(1), 12018. doi:10.1088/1742-6596/1882/1/012018.

Fonseca, D., Climent, A., Vicent, L., Canaleta, X. (2016). Learning4Work. Designing a New Evaluation System Based on Scenario Centered Curriculum Methodology: The Pre-test. Learning and Collaboration Technologies, LCT 2016, Lecture Notes in Computer Science, 9753, Springer, Cham, Switzerland. doi:10.1007/978-3-319-39483-1_1.

Karami, M., Pakmehr, H., & Aghili, A. (2012). Another View to Importance of Teaching Methods in Curriculum: Collaborative Learning and Students’ Critical Thinking Disposition. Procedia - Social and Behavioral Sciences, 46, 3266–3270. doi:10.1016/j.sbspro.2012.06.048.

Zarouk, M. Y., Olivera, E., & Khaldi, M. (2020). The impact of flipped project-based learning on self-regulation in higher education. International Journal of Emerging Technologies in Learning, 15(17), 127–147. doi:10.3991/ijet.v15i17.14135.

Mejia, C. R., Valladares-Garrido, M. J., Miñan-Tapia, A., Serrano, F. T., Tobler-Gómez, L. E., Pereda-Castro, W., Mendoza-Flores, C. R., Mundaca-Manay, M. Y., & Valladares-Garrido, D. (2017). Use, knowledge, and perception of the scientific contribution of Sci-Hub in medical students: Study in six countries in Latin America. PLoS ONE, 12(10), 185673. doi:10.1371/journal.pone.0185673.

Velazco, D. J. M., Hinostroza, E. M. F., Moreno, J. E. S., Cerda, J. F. P., & Barros, M. V. S. (2022). Attitudes of Ecuadorian Secondary School Teaching Staff towards Online STEM Development in 2022. International Journal of Learning, Teaching and Educational Research, 21(7), 59–81. doi:10.26803/ijlter.21.7.4.

Rivadeneira, J., & Inga, E. (2023). Interactive Peer Instruction Method Applied to Classroom Environments Considering a Learning Engineering Approach to Innovate the Teaching–Learning Process. Education Sciences, 13(3), 301. doi:10.3390/educsci13030301.

Kohnle, A., Mclean, S., & Aliotta, M. (2011). Towards a conceptual diagnostic survey in nuclear physics. European Journal of Physics, 32(1), 55–62. doi:10.1088/0143-0807/32/1/006.

SENESCYT. (2022). Statistics of Higher Education, Science, Technology and Innovation. Higher Education Information System (SIAU). National Secretariat of Higher Education, Science, Technology, and Innovation (SENESCYT), Quito, Ecuador. Available online: https://siau.senescyt.gob.ec/estadisticas-de-educacion-superior-ciencia-tecnologia-e-innovacion/ (accessed on June 2023). (In Spanish).

van der Walt, F., & Nkoyi, A. (2022). Students’ Learning Styles and Perception of Online Learning. Higher Education in the Face of a Global Pandemic, 96–119, Brill, Leiden, Netherlands. doi:10.1163/9789004514461_005.

Tene, T., Vacacela Gomez, C., Tubon Usca, G., Suquillo, B., & Bellucci, S. (2021). Measurement of radon exhalation rate from building materials: The case of Highland Region of Ecuador. Construction and Building Materials, 293, 123282. doi:10.1016/j.conbuildmat.2021.123282.

Prahani, B. K., Amiruddin, M. Z. Bin, Suprapto, N., Deta, U. A., & Cheng, T. H. (2022). The Trend of Physics Education Research during COVID-19 Pandemic. International Journal of Educational Methodology, 8(3), 517–533. doi:10.12973/ijem.8.3.517.

Yuniarti Suhendi, H., Ali Ramdhani, M., & S. Irwansyah, F. (2018). Verification Concept of Assesment for Physics Education Student Learning Outcome. International Journal of Engineering & Technology, 7(3.21), 321. doi:10.14419/ijet.v7i3.21.17181.

Saepuzaman, D., Retnawati, H., Istiyono, E., & Haryanto. (2021). Can innovative learning affect student HOTS achievements?: A meta-analysis study. Pegem Journal of Education and Instruction, 11(4). doi:10.47750/pegegog.11.04.28.


Full Text: PDF

DOI: 10.28991/ESJ-2024-SIED1-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Talia Tene