Exploring Individuals’ Experiences with Security Attacks: A Text Mining and Qualitative Study
Abstract
Doi: 10.28991/ESJ-2024-08-01-010
Full Text: PDF
Keywords
References
Horng, S. J., Su, M. Y., Chen, Y. H., Kao, T. W., Chen, R. J., Lai, J. L., & Perkasa, C. D. (2011). A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert Systems with Applications, 38(1), 306–313. doi:10.1016/j.eswa.2010.06.066.
Songma, S., Chimphlee, W., Songma, S., Chimphlee, W., Maichalernnukul, K., & Sanguansat, P. (2012). Implementation of Fuzzy c-Means and Outlier Detection for Intrusion Detection with KDD Cup 1999 Data Set. International Journal of Engineering Research and Development, 2(2), 44–48.
Yan, Z., Xue, Y., & Lou, Y. (2021). Risk and protective factors for intuitive and rational judgment of cybersecurity risks in a large sample of K-12 students and teachers. Computers in Human Behavior, 121, 106791. doi:10.1016/j.chb.2021.106791.
Lallie, H. S., Shepherd, L. A., Nurse, J. R. C., Erola, A., Epiphaniou, G., Maple, C., & Bellekens, X. (2021). Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic. Computers & Security, 105, 102248. doi:10.1016/j.cose.2021.102248.
Shi, F. (2020). Threat spotlight: Coronavirus-related phishing. Barracuda Networks: Campbell, United States.
Lush, R. (2020). Helping defend against a 30,000% increase in phishing attacks related to COVID-19 scams. CGI, Brussels, Belgium. Available online: https://www.cgi.com/uk/en-gb/blog/cyber-security/helping-defend-against-a-30000-increase-in-phishing-attacks-related-to-covid-19-scams (accessed on January 2024).
Cyberlands.io. (2024). Top-9 Cybersecurity Breaches in Saudi Arabia. Cyberlands.io, Rotterdam, Netherlands. Available online: https://www.cyberlands.io/topsecuritybreachessaudiarabia (accessed on January 2024).
Aljedaani, B., Ahmad, A., Zahedi, M., & Babar, M. A. (2023). End-users’ knowledge and perception about security of clinical mobile health apps: A case study with two Saudi Arabian mHealth providers. Journal of Systems and Software, 195, 111519. doi:10.1016/j.jss.2022.111519.
I.S.B.S. (1996). Computer Fraud & Security: Information Security Breaches Survey, 1996, 4. doi:10.1016/s1361-3723(97)82578-x.
Balapour, A., Nikkhah, H. R., & Sabherwal, R. (2020). Mobile application security: Role of perceived privacy as the predictor of security perceptions. International Journal of Information Management, 52, 102063. doi:10.1016/j.ijinfomgt.2019.102063.
Klobas, J. E., McGill, T., & Wang, X. (2019). How perceived security risk affects intention to use smart home devices: A reasoned action explanation. Computers and Security, 87, 101571. doi:10.1016/j.cose.2019.101571.
Okey, O. D., Udo, E. U., Rosa, R. L., Rodríguez, D. Z., & Kleinschmidt, J. H. (2023). Investigating ChatGPT and cybersecurity: A perspective on topic modeling and sentiment analysis. Computers and Security, 135, 103476. doi:10.1016/j.cose.2023.103476.
Tayouri, D. (2015). The Human Factor in the Social Media Security – Combining Education and Technology to Reduce Social Engineering Risks and Damages. Procedia Manufacturing, 3, 1096–1100. doi:10.1016/j.promfg.2015.07.181.
Khalil, L., & Karam, N. A. (2015). Security Management: Real versus Perceived Risk of Commercial Exploitation of Social Media Personal Data. Procedia Computer Science, 65, 304–313. doi:10.1016/j.procs.2015.09.087.
Beigi, G., Shu, K., Zhang, Y., & Liu, H. (2018). Securing Social Media User Data. Proceedings of the 29th on Hypertext and Social Media. doi:10.1145/3209542.3209552.
Yu, S., Vorobeychik, Y., & Alfeld, S. (2018). Adversarial classification on social networks. arXiv Preprint, arXiv:1801.08159. doi:10.48550/arXiv.1801.08159.
Gong, N. Z., & Liu, B. (2018). Attribute inference attacks in online social networks. ACM Transactions on Privacy and Security, 21(1), 1–30. doi:10.1145/3154793.
Jia, J., Wang, B., Zhang, L., & Gong, N. Z. (2017). AttriInfer. Proceedings of the 26th International Conference on World Wide Web. doi:10.1145/3038912.3052695.
Jia, J., & Gong, N. Z. (2018). AttriGuard: A practical defense against attribute inference attacks via adversarial machine learning. Proceedings of the 27th USENIX Security Symposium, 15-17 August, 208, Baltimore, United States.
Granger, S. (2001). Social engineering fundamentals, part I: hacker tactics. Security Focus, December, 18.
Jakobsson, M., & Myers, S. (2006). Phishing and countermeasures: understanding the increasing problem of electronic identity theft. John Wiley & Sons, Hoboken, United States. doi:10.1002/0470086106.
He, W. (2012). A review of social media security risks and mitigation techniques. Journal of Systems and Information Technology, 14(2), 171–180. doi:10.1108/13287261211232180.
Gallagher, S., & Brandt, A. (2020). Facing down the myriad threats tied to COVID-19. Sophos, Abingdon, United Kingdom. Available online: https://news.sophos.com/en-us/2020/04/14/covidmalware/ (accessed on January 2024).
Valdez, C. R., Walsdorf, A. A., Wagner, K. M., Salgado de Snyder, V. N., Garcia, D., & Villatoro, A. P. (2022). The intersection of immigration policy impacts and COVID‐19 for Latinx young adults. American Journal of Community Psychology, 70(3-4), 420-432. doi:10.1002/ajcp.12617.
Franco, E. G., Lukacs, R., Müller, M. S., Shetler-Jones, P., & Zahidi, S. (2020, May). COVID-19 risks outlook: A preliminary mapping and its implications. World Economic Forum, Cologny, Switzerland.
Kumaran, N., & Lugani, S. (2020). Protecting businesses against cyber threats during COVID-19 and beyond. Google Cloud, 16.
European Union Agency for Law Enforcement Cooperation (EUROPOL). (2020). Pandemic profiteering: how criminals exploit the COVID‐19 crisis. European Union Agency for Law Enforcement Cooperation (EUROPOL), The Hague, Netherlands.
Chen, L., Ye, Y., & Bourlai, T. (2017). Adversarial Machine Learning in Malware Detection: Arms Race between Evasion Attack and Defense. 2017 European Intelligence and Security Informatics Conference (EISIC), Athens, Greece. doi:10.1109/eisic.2017.21.
Yan, Q., Li, Y., Li, T., & Deng, R. (2009). Insights into Malware Detection and Prevention on Mobile Phones. Security Technology, SecTech 2009. Communications in Computer and Information Science, 58. Springer, Berlin, Germany. doi:10.1007/978-3-642-10847-1_30.
La Polla, M., Martinelli, F., & Sgandurra, D. (2013). A survey on security for mobile devices. IEEE Communications Surveys and Tutorials, 15(1), 446–471. doi:10.1109/SURV.2012.013012.00028.
Chiang, H.-S., & Tsaur, W.-J. (2010). Mobile Malware Behavioral Analysis and Preventive Strategy Using Ontology. 2010 IEEE Second International Conference on Social Computing, Minneapolis, United States. doi:10.1109/socialcom.2010.160.
Khan, J., Abbas, H., & Al-Muhtadi, J. (2015). Survey on mobile user’s data privacy threats and defense mechanisms. Procedia Computer Science, 56(1), 376–383. doi:10.1016/j.procs.2015.07.223.
Schultz, E. E. (2006). Where have the worms and viruses gone?-new trends in malware. Computer Fraud & Security, 2006(7), 4–8. doi:10.1016/S1361-3723(06)70398-0.
Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., & Kruegel, C. (2009). A View on Current Malware Behaviors: LEET. Available online: https://www.usenix.org/legacy/event/leet09/tech/full_papers/bayer/bayer_html/ (accessed on May 2023).
Potlapally, N. (2011). Hardware security in practice: Challenges and opportunities. 2011 IEEE International Symposium on Hardware-Oriented Security and Trust, San Diego, United States. doi:10.1109/hst.2011.5955003.
Li, Q., Gao, H., Xu, B., & Jiao, Z. (2008). Hardware Threat: The Challenge of Information Security. 2008 International Symposium on Computer Science and Computational Technology, Shanghai, China. doi:10.1109/iscsct.2008.217.
Chen, X., & Shi, S. (2009). A Literature Review of Privacy Research on Social Network Sites. 2009 International Conference on Multimedia Information Networking and Security, Wuhan, China. doi:10.1109/mines.2009.268.
Raji, F., Miri, A., & Davarpanah Jazi, M. (2012). Preserving Privacy in Online Social Networks. Foundations and Practice of Security. FPS 2011. Lecture Notes in Computer Science, 6888, Springer, Berlin, Germany. doi:10.1007/978-3-642-27901-0_1.
Srivastava, A., & Geethakumari, G. (2013). Measuring privacy leaks in Online Social Networks. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, India. doi:10.1109/icacci.2013.6637504.
Williams, T., & Betak, J. (2018). A Comparison of LSA and LDA for the Analysis of Railroad Accident Text. Procedia Computer Science, 130, 98–102. doi:10.1016/j.procs.2018.04.017.
Huang, S., Zhang, J., Yang, C., Gu, Q., Li, M., & Wang, W. (2022). The interval grey QFD method for new product development: Integrate with LDA topic model to analyze online reviews. Engineering Applications of Artificial Intelligence, 114, 105213. doi:10.1016/j.engappai.2022.105213.
Wei, X., & Taecharungroj, V. (2022). How to improve learning experience in MOOCs an analysis of online reviews of business courses on Coursera. International Journal of Management Education, 20(3), 100675. doi:10.1016/j.ijme.2022.100675.
Sim, Y., Lee, S. K., & Sutherland, I. (2021). The impact of latent topic valence of online reviews on purchase intention for the accommodation industry. Tourism Management Perspectives, 40, 100903. doi:10.1016/j.tmp.2021.100903.
Alzahrani, S. S. (2022). Data Mining Regarding Cyberbullying in the Arabic Language on Instagram Using KNIME and Orange Tools. Engineering, Technology & Applied Science Research, 12(5), 9364–9371. doi:10.48084/etasr.5184.
Thummala, V., & Hiremath, R. B. (2022). Green aviation in India: Airline’s implementation for achieving sustainability. Cleaner and Responsible Consumption, 7, 100082. doi:10.1016/j.clrc.2022.100082.
Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic Analysis: Striving to Meet the Trustworthiness Criteria. International Journal of Qualitative Methods, 16(1), 1609406917733847. doi:10.1177/1609406917733847.
Paulus, T., Woods, M., Atkins, D. P., & Macklin, R. (2017). The discourse of QDAS: reporting practices of ATLAS.ti and NVivo users with implications for best practices. International Journal of Social Research Methodology, 20(1), 35–47. doi:10.1080/13645579.2015.1102454.
Claps, G. G., Berntsson Svensson, R., & Aurum, A. (2015). On the journey to continuous deployment: Technical and social challenges along the way. Information and Software Technology, 57(1), 21–31. doi:10.1016/j.infsof.2014.07.009.
Yin, R. K. (2013). Validity and generalization in future case study evaluations. Evaluation, 19(3), 321–332. doi:10.1177/1356389013497081.
Sabzi, M., Kamarei, M., Haghighi, T. R., & Mahe, Y. (2020). Analysis and Design of X-Band LNA Using Parallel Technique. 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran. doi:10.1109/icee50131.2020.9260604.
Abbasi, S. olah, Nejatian, S., Parvin, H., Rezaie, V., & Bagherifard, K. (2019). Clustering ensemble selection considering quality and diversity. Artificial Intelligence Review, 52(2), 1311–1340. doi:10.1007/s10462-018-9642-2.
Hu, X., Li, Y., Chen, G., Zhao, Z., & Qu, X. (2022). Identification of balance recovery patterns after slips using hierarchical cluster analysis. Journal of Biomechanics, 143, 111281. doi:10.1016/j.jbiomech.2022.111281.
Fatouros, G., Soldatos, J., Kouroumali, K., Makridis, G., & Kyriazis, D. (2023). Transforming sentiment analysis in the financial domain with ChatGPT. Machine Learning with Applications, 14, 100508. doi:10.1016/j.mlwa.2023.100508.
Md Suhaimin, M. S., Ahmad Hijazi, M. H., Moung, E. G., Nohuddin, P. N. E., Chua, S., & Coenen, F. (2023). Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions. Journal of King Saud University - Computer and Information Sciences, 35(9), 101776. doi:10.1016/j.jksuci.2023.101776.
Chen, Y., Han, D., & Zhou, X. (2023). Mining the emotional information in the audio of earnings conference calls: A deep learning approach for sentiment analysis of securities analysts’ follow-up behavior. International Review of Financial Analysis, 88, 102704. doi:10.1016/j.irfa.2023.102704.
McGuire, M., & Dowling, S. (2013). Cybercrime: A review of the evidence. Summary of key findings and implications. Home Office Research Report, 75, 1-35.
DOI: 10.28991/ESJ-2024-08-01-010
Refbacks
- There are currently no refbacks.