Optimizing Cr(VI) Reduction in Plastic Chromium Plating Wastewater: Particle Size, Irradiation, Titanium Dose

Angelica Santis, Oscar Arbeláez, Luz Angelica Cardenas, Jaritza Castellanos, Pablo Velasquez

Abstract


The preservation of the aquatic environment and water systems has been a fundamental objective that has led great scientists and researchers to seek new alternatives or techniques that allow the decontamination of water sources. The plastic chromium plating industries have been identified as important sources of contamination since their residues are characterized by having considerable amounts of hexavalent chromium Cr (VI), which alters the stability of water resources and can affect effluents on the surface and the subsoil. Given this problem, the need to improve the usual methods and techniques for wastewater treatment with more effective solutions, such as photocatalysis, which presents significant advantages over the inefficiency of traditional methods, is recognized. However, given the limited availability of research in the country that addresses the removal of hexavalent chromium from the wastewater of these industries, this work focuses on optimizing the process by varying conditions of variables such as particle size, catalyst dose, and irradiation time. The optimization of the photocatalysis process was evaluated using the Box-Behnken experimental design. The results show that contaminant removal occurred when the particle size was 0.177 mm. This particle size showed the highest photocatalytic activity, with 100% removal at 45 minutes. These findings represent a significant step towards solving the problem of contamination in this business sector by this pollutant and contribute to preserving our water resources.

 

Doi: 10.28991/ESJ-2024-08-01-02

Full Text: PDF


Keywords


Photocatalysis; Box-Behnken Experimental Design; Particle Size; Catalyst; Hexavalent Chromium Cr (VI).

References


Acharya, R., Naik, B., & Parida, K. (2018). Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein Journal of Nanotechnology, 9(1), 1448–1470. doi:10.3762/bjnano.9.137.

Karimi-Maleh, H., Ayati, A., Ghanbari, S., Orooji, Y., Tanhaei, B., Karimi, F., Alizadeh, M., Rouhi, J., Fu, L., & Sillanpää, M. (2021). Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. Journal of Molecular Liquids, 329, 115062. doi:10.1016/j.molliq.2020.115062.

Azeez, N. A., Dash, S. S., Gummadi, S. N., & Deepa, V. S. (2021). Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. Chemosphere, 266, 129204. doi:10.1016/j.chemosphere.2020.129204.

Aigbe, U. O., & Osibote, O. A. (2020). A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. Journal of Environmental Chemical Engineering, 8(6), 104503. doi:10.1016/j.jece.2020.104503.

IDEAM. (2023). National Water Study 2022. Institute of Hydrology, Meteorology and Environmental Studies (IDEAM), Bogota, Colombia.

Avila Triviño, J. J., & Larrota Paz, I. (2021). Analysis of concentrations of mercury, hexavalent chromium in water from the Magdalena River, as a source of supply for human consumption in Girardot-Ricaurte. Universidad Piloto de Colombia, Bogota, Colombia.

Wu, Z., Chen, R., Gan, Q., Li, J., Zhang, T., & Ye, M. (2018). Mesoporous Na+–SiO2 spheres for efficient removal of Cr3+ from aqueous solution. Journal of Environmental Chemical Engineering, 6(2), 1774–1782. doi:10.1016/j.jece.2018.02.025.

Tahir, M. B., Kiran, H., & Iqbal, T. (2019). The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environmental Science and Pollution Research, 26(11), 10515–10528. doi:10.1007/s11356-019-04547-x.

Islam, M. M., Mohana, A. A., Rahman, M. A., Rahman, M., Naidu, R., & Rahman, M. M. (2023). A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics, 11(3), 252. doi:10.3390/toxics11030252.

Yuan, G., Li, F., Li, K., Liu, J., Li, J., Zhang, S., Jia, Q., & Zhang, H. (2021). Research progress on photocatalytic reduction of Cr(VI) in polluted water. Bulletin of the Chemical Society of Japan, 94(4), 1142–1155. doi:10.1246/bcsj.20200317.

Lathe, A., & Palve, A. M. (2023). A review: Engineered nanomaterials for photoreduction of Cr(VI) to Cr(III). Journal of Hazardous Materials Advances, 12, 100333. doi:10.1016/j.hazadv.2023.100333.

Naik, B., Nanda, B., Das, K. K., & Parida, K. (2017). Enhanced photocatalytic activity of nanoporous BiVO4/MCM-41 co-joined nanocomposites for solar energy conversion and environmental pollution abatement. Journal of Environmental Chemical Engineering, 5(5), 4524–4530. doi:10.1016/j.jece.2017.08.045.

Katal, R., Masudy-Panah, S., Tanhaei, M., Farahani, M. H. D. A., & Jiangyong, H. (2020). A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chemical Engineering Journal, 384. doi:10.1016/j.cej.2019.123384.

Ghorab, M. F., Djellabi, R., & Messadi, R. (2013). Photo-reduction of Hexavalent Chromium in Aqueous Solution in the Presence of TiO2as Semiconductor Catalyst. E3S Web of Conferences, 1, 25008. doi:10.1051/e3sconf/20130125008.

Castiblanco, Y., Perilla, A., Arbelaez, O., Velásquez, P., & Santis, A. (2021). Effect of the pH and the catalyst concentration on the removal of hexavalent chromium (Cr (VI)) during photocatalysis of wastewater from plating on plastics industry. Chemical Engineering Transactions, 86, 679–684. doi:10.3303/CET2186114.

Sane, P., Chaudhari, S., Nemade, P., & Sontakke, S. (2018). Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. Journal of Environmental Chemical Engineering, 6(1), 68–73. doi:10.1016/j.jece.2017.11.060.

Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y., Yang, J., Bahnemann, D. W., & Pan, J. H. (2019). Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 335, 78–90. doi:10.1016/j.cattod.2018.10.053.

Wu, Q., Zhao, J., Qin, G., Wang, C., Tong, X., & Xue, S. (2013). Photocatalytic reduction of Cr(VI) with TiO2 film under visible light. Applied Catalysis B: Environmental, 142–143, 142–148. doi:10.1016/j.apcatb.2013.04.056.

Zhang, X., Song, L., Zeng, X., & Li, M. (2012). Effects of Electron Donors on the TiO2 Photocatalytic Reduction of Heavy Metal Ions under Visible Light. Energy Procedia, 17, 422–428. doi:10.1016/j.egypro.2012.02.115.

Marinho, B. A., Djellabi, R., Cristóvão, R. O., Loureiro, J. M., Boaventura, R. A. R., Dias, M. M., Lopes, J. C. B., & Vilar, V. J. P. (2017). Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr(VI) reduction under simulated solar light. Chemical Engineering Journal, 318, 76–88. doi:10.1016/j.cej.2016.05.077.

Ribao, P., Corredor, J., Rivero, M. J., & Ortiz, I. (2019). Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. Journal of Hazardous Materials, 372, 45–51. doi:10.1016/j.jhazmat.2018.05.026.

Li, Z., Lu, D., & Gao, X. (2021). Optimization of mixture proportions by statistical experimental design using response surface method - A review. Journal of Building Engineering, 36, 102101. doi:10.1016/j.jobe.2020.102101.

Giri, A. K., & Mishra, P. C. (2023). Optimization of different process parameters for the removal efficiency of fluoride from aqueous medium by a novel bio-composite using Box-Behnken design. Journal of Environmental Chemical Engineering, 11(1), 82283877. doi:10.1016/j.jece.2022.109232.

Rashid, M. M., Simončič, B., & Tomšič, B. (2021). Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 22, 100890. doi:10.1016/j.surfin.2020.100890.

Suhan, M. B. K., Al-Mamun, M. R., Farzana, N., Aishee, S. M., Islam, M. S., Marwani, H. M., Hasan, M. M., Asiri, A. M., Rahman, M. M., Islam, A., & Awual, M. R. (2023). Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review. Nano-Structures and Nano-Objects, 36. doi:10.1016/j.nanoso.2023.101050.

Pechishcheva, N. V., Ordinartsev, D. P., Valeeva, A. A., Zaitceva, P. V., Korobitsyna, A. D., Sushnikova, A. A., Petrova, S. A., Shunyaev, K. Y., & Rempel, A. A. (2023). Photoadsorption of Cr(VI) on titanium dioxide modified by high-energy milling. Inorganic Chemistry Communications, 154, 110968. doi:10.1016/j.inoche.2023.110968.

Kandasamy, S., Velusamy, S., Thirumoorthy, P., Periyasamy, M., SenthilkumarVeerasamy, Gopalakrishnan, K. M., ... & Periyasamy, S. (2022). Adsorption of chromium ions from aqueous solutions by synthesized nanoparticles. Journal of Nanomaterials, 2022, 1-8. doi:10.1155/2022/6214438.

Stancl, H. O. N., Hristovski, K., & Westerhoff, P. (2015). Hexavalent Chromium Removal Using UV-TiO2/Ceramic Membrane Reactor. Environmental Engineering Science, 32(8), 676–683. doi:10.1089/ees.2014.0507.

Joshi, K. M., & Shrivastava, V. S. (2011). Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Applied Nanoscience (Switzerland), 1(3), 147–155. doi:10.1007/s13204-011-0023-2.

Djellabi, R., Su, P., Elimian, E. A., Poliukhova, V., Nouacer, S., Abdelhafeez, I. A., Abderrahim, N., Aboagye, D., Andhalkar, V. V., Nabgan, W., Rtimi, S., & Contreras, S. (2022). Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal of Water Process Engineering, 50. doi:10.1016/j.jwpe.2022.103301.

Yang, C. C., Dao, K. C., Lin, Y. S., Cheng, T. Y., Chen, K. F., & Tsai, Y. P. (2021). Impacts of mixing mode on photocatalytic reduction of hexavalent chromium over titanium dioxide nanomaterial under various environmental conditions. Water (Switzerland), 13(16), 2291. doi:10.3390/w13162291.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-01-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Angelica Santis, Oscar Arbelaez, Luz Angelica Cardozo, Jaritza Castellanos, Pablo Velasquez