Extracting Explicit and Implicit Aspects Using Deep Learning

Mikail Muhammad Azman Busst, Kalaiarasi Sonai Muthu Anbananthen, Subarmaniam Kannan, Rajkumar Kannan


The proliferation of user-generated content on social networks and websites has heightened the significance of sentiment analysis, also known as opinion mining, as a critical tool for comprehending people’s attitudes toward various topics. Aspect-level sentiment analysis, which considers specific aspects or features of texts, provides a more comprehensive view of sentiment analysis. The aspect-level approach encompasses both explicit and implicit aspects, where explicit aspects are readily mentioned in texts while implicit aspects are implied or inferred from contextual clues. Despite the significance of implicit aspects in the overall review, previous research has predominantly focused on explicit aspect extraction. Limited attention has been given to the extraction of implicit aspects, despite their potential impact on capturing the complete sentiment picture of texts. Therefore, this study aims to find an aspect extraction solution capable of identifying and extracting both explicit and implicit aspects from texts. This study compares various machine and deep learning models on the SemEval-2014 and SemEval-2016 restaurant datasets. The experimental analysis demonstrates that the proposed Aspect-BiLSTM model emerged as the best-performing model, achieving high accuracy in classifying both explicit and implicit aspects, with 92.9% accuracy for the 2014 and 90.7% accuracy for the 2016 datasets. Notably, the proposed solution was able to capture multiple aspects of texts, making it more robust and versatile. This study highlights the efficacy of the Aspect-BiLSTM model for aspect extraction, which will give valuable insights into the advancement of aspect-level sentiment analysis.


Doi: 10.28991/ESJ-2024-08-01-05

Full Text: PDF


Aspect Extraction; Explicit Aspects; Implicit Aspects; Deep Learning.


Anbananthen, K. S. M., & Elyasir, A. M. H. (2013). Evolution of opinion mining. Australian Journal of Basic and Applied Sciences, 7(6), 359-370.

Jonnalagadda, P., Hari, K. P., Batha, S., & Boyina, H. (2019). A rule based sentiment analysis in Telugu. International Journal of Advance Research, Ideas and Innovations in Technology, 2(5), 387-390.

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. doi:10.1016/j.asej.2014.04.011.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A Survey. WIREs Data Mining and Knowledge Discovery, 8(4), e1253. doi:10.1002/widm.1253.

Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168-177. doi:10.1145/1014052.1014073.

Singh Chauhan, G., Kumar Meena, Y., Gopalani, D., & Nahta, R. (2020). A two-step hybrid unsupervised model with attention mechanism for aspect extraction. Expert Systems with Applications, 161, 113673–113686. doi:10.1016/j.eswa.2020.113673.

He, K., Mao, R., Gong, T., Li, C., & Cambria, E. (2023). Meta-Based Self-Training and Re-Weighting for Aspect-Based Sentiment Analysis. IEEE Transactions on Affective Computing, 14(3), 1731–1742. doi:10.1109/TAFFC.2022.3202831.

Karimi, A., Rossi, L., & Prati, A. (2021). Adversarial Training for Aspect-Based Sentiment Analysis with BERT. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy. doi:10.1109/icpr48806.2021.9412167.

Maitama, J. Z., Idris, N., Abdi, A., Shuib, L., & Fauzi, R. (2020). A Systematic Review on Implicit and Explicit Aspect Extraction in Sentiment Analysis. IEEE Access, 8, 194166–194191. doi:10.1109/access.2020.3031217.

Zhang, M., & Qian, T. (2020). Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 3540-3549. doi:10.18653/v1/2020.emnlp-main.286.

Zhou, J., Huang, J. X., Hu, Q. V., & He, L. (2020). SK-GCN: Modeling Syntax and Knowledge via Graph Convolutional Network for aspect-level sentiment classification. Knowledge-Based Systems, 205. doi:10.1016/j.knosys.2020.106292.

Anbananthen, S. K., Sainarayanan, G., Chekima, A., & Teo, J. (2006). Data Mining using Pruned Artificial Neural Network Tree (ANNT). IEEE 2nd International Conference on Information & Communication Technologies, Damascus, Syria. doi:10.1109/ICTTA.2006.1684577.

Zainuddin, N., Selamat, A., & Ibrahim, R. (2018). Hybrid sentiment classification on twitter aspect-based sentiment analysis. Applied Intelligence, 48(5), 1218–1232. doi:10.1007/s10489-017-1098-6.

Schouten, K., van der Weijde, O., Frasincar, F., & Dekker, R. (2018). Supervised and Unsupervised Aspect Category Detection for Sentiment Analysis with Co-occurrence Data. IEEE Transactions on Cybernetics, 48(4), 1263–1275. doi:10.1109/TCYB.2017.2688801.

Rana, T. A., Cheah, Y.-N., & Rana, T. (2020). Multi-level knowledge-based approach for implicit aspect identification. Applied Intelligence, 50(12), 4616–4630. doi:10.1007/s10489-020-01817-x.

Venugopalan, M., & Gupta, D. (2020). An Unsupervised Hierarchical Rule Based Model for Aspect Term Extraction Augmented with Pruning Strategies. Procedia Computer Science, 171, 22–31. doi:10.1016/j.procs.2020.04.303.

Li, X., Wang, B., Li, L., Gao, Z., Liu, Q., Xu, H., & Fang, L. (2020). Deep2s: Improving Aspect Extraction in Opinion Mining with Deep Semantic Representation. IEEE Access, 8, 104026–104038. doi:10.1109/ACCESS.2020.2999673.

Cilibrasi, R. L., & Vitányi, P. M. B. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370–383. doi:10.1109/TKDE.2007.48.

Dimopoulos, Y., Nebel, B., Koehler, J. (1997). Encoding planning problems in non-monotonic logic programs. Recent Advances in AI Planning. ECP 1997. Lecture Notes in Computer Science, Volume 1348. Springer, Berlin, Germany. doi:10.1007/3-540-63912-8_84.

Langkilde, I., & Knight, K. (1998). Generation that exploits corpus-based statistical knowledge. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 1, 704–710. doi:10.3115/980845.980963.

Tulkens, S., & van Cranenburgh, A. (2020). Embarrassingly simple unsupervised aspect extraction. arXiv Preprint, arXiv:2004.13580. doi:10.48550/arXiv.2004.13580.

Luo, L., Ao, X., Song, Y., Li, J., Yang, X., He, Q., & Yu, D. (2019). Unsupervised Neural Aspect Extraction with Sememes. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 5123-5129. doi:10.24963/ijcai.2019/712.

Venugopalan, M., & Gupta, D. (2022). An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis. Knowledge-Based Systems, 246. doi:10.1016/j.knosys.2022.108668.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv Preprint, arXiv:1301.3781. doi:10.48550/arXiv.1301.3781.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. doi:10.1093/genetics/155.2.945.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. doi:10.1016/j.neunet.2005.06.042.

Akhtar, M. S., Garg, T., & Ekbal, A. (2020). Multi-task learning for aspect term extraction and aspect sentiment classification. Neurocomputing, 398, 247–256. doi:10.1016/j.neucom.2020.02.093.

Ray, P., & Chakrabarti, A. (2022). A Mixed approach of Deep Learning method and Rule-Based method to improve Aspect Level Sentiment Analysis. Applied Computing and Informatics, 18(1–2), 163–178. doi:10.1016/j.aci.2019.02.002.

Cai, H., Tu, Y., Zhou, X., Yu, J., & Xia, R. (2020). Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network. Proceedings of the 28th International Conference on Computational Linguistics, 833-843. doi:10.18653/v1/2020.coling-main.72.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2323. doi:10.1109/5.726791.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Preprint, arXiv:1810.04805. doi:10.48550/arXiv.1810.04805.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. doi:10.1037/h0042519.

Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., & Manandhar, S. (2014). SemEval-2014 Task 4: Aspect Based Sentiment Analysis. 8th International Workshop on Semantic Evaluation (SemEval-2014), 27–35. doi:10.3115/v1/S14-2004.

Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26–32. doi:10.1016/j.procs.2013.05.005.

Wang, S., Zhou, W., & Jiang, C. (2020). A survey of word embeddings based on deep learning. Computing, 102(3), 717–740. doi:10.1007/s00607-019-00768-7.

Fix, E., & Hodges, J. L. (1989). Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. International Statistical Review / Revue Internationale de Statistique, 57(3), 238. doi:10.2307/1403797.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and Regression Trees. Routledge, New York, United States. doi:10.1201/9781315139470.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. doi:10.1038/323533a0.

Cho, K., Merrienboer, B.v., Bahdanau, D., & Bengio, Y. (2014). On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv. doi:10.48550/arXiv.1409.1259.

Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., Clercq, O. D., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jiménez-Zafra, S. M., & Eryig ̆it, G. (2016). SemEval-2016 Task 5: Aspect Based Sentiment Analysis. 10th International Workshop on Semantic Evaluation (SemEval-2016), 19–30. doi:10.18653/v1/S16-1002.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.

Tensorflow. (2022). Create production-grade machine learning models with TensorFlow. Version v2.15.0. Available online: https://zenodo.org/records/10126399 (accessed on February 2024).

Khan, M. U., Javed, A. R., Ihsan, M., & Tariq, U. (2023). A novel category detection of social media reviews in the restaurant industry. Multimedia Systems, 29(3), 1825–1838. doi:10.1007/s00530-020-00704-2.

Kumar, A., Veerubhotla, A. S., Narapareddy, V. T., Aruru, V., Neti, L. B. M., & Malapati, A. (2021). Aspect term extraction for opinion mining using a Hierarchical Self-Attention Network. Neurocomputing, 465, 195–204. doi:10.1016/j.neucom.2021.08.133.

Wan, H., Yang, Y., Du, J., Liu, Y., Qi, K., & Pan, J. Z. (2020). Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 9122–9129. doi:10.1609/aaai.v34i05.6447.

Anbananthen, K. S. M., Busst, M. B. M. A., Kannan, R., & Kannan, S. (2023). A Comparative Performance Analysis of Hybrid and Classical Machine Learning Method in Predicting Diabetes. Emerging Science Journal, 7(1), 102–115. doi:10.28991/ESJ-2023-07-01-08.

Full Text: PDF

DOI: 10.28991/ESJ-2024-08-01-05


  • There are currently no refbacks.

Copyright (c) 2024 Mikail Muhammad Azman Busst, Kalaiarasi Sonai Muthu Anbananthen, Subarmaniam Kannan