Extracting Explicit and Implicit Aspects Using Deep Learning
Abstract
Doi: 10.28991/ESJ-2024-08-01-05
Full Text: PDF
Keywords
References
Anbananthen, K. S. M., & Elyasir, A. M. H. (2013). Evolution of opinion mining. Australian Journal of Basic and Applied Sciences, 7(6), 359-370.
Jonnalagadda, P., Hari, K. P., Batha, S., & Boyina, H. (2019). A rule based sentiment analysis in Telugu. International Journal of Advance Research, Ideas and Innovations in Technology, 2(5), 387-390.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. doi:10.1016/j.asej.2014.04.011.
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A Survey. WIREs Data Mining and Knowledge Discovery, 8(4), e1253. doi:10.1002/widm.1253.
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168-177. doi:10.1145/1014052.1014073.
Singh Chauhan, G., Kumar Meena, Y., Gopalani, D., & Nahta, R. (2020). A two-step hybrid unsupervised model with attention mechanism for aspect extraction. Expert Systems with Applications, 161, 113673–113686. doi:10.1016/j.eswa.2020.113673.
He, K., Mao, R., Gong, T., Li, C., & Cambria, E. (2023). Meta-Based Self-Training and Re-Weighting for Aspect-Based Sentiment Analysis. IEEE Transactions on Affective Computing, 14(3), 1731–1742. doi:10.1109/TAFFC.2022.3202831.
Karimi, A., Rossi, L., & Prati, A. (2021). Adversarial Training for Aspect-Based Sentiment Analysis with BERT. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy. doi:10.1109/icpr48806.2021.9412167.
Maitama, J. Z., Idris, N., Abdi, A., Shuib, L., & Fauzi, R. (2020). A Systematic Review on Implicit and Explicit Aspect Extraction in Sentiment Analysis. IEEE Access, 8, 194166–194191. doi:10.1109/access.2020.3031217.
Zhang, M., & Qian, T. (2020). Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 3540-3549. doi:10.18653/v1/2020.emnlp-main.286.
Zhou, J., Huang, J. X., Hu, Q. V., & He, L. (2020). SK-GCN: Modeling Syntax and Knowledge via Graph Convolutional Network for aspect-level sentiment classification. Knowledge-Based Systems, 205. doi:10.1016/j.knosys.2020.106292.
Anbananthen, S. K., Sainarayanan, G., Chekima, A., & Teo, J. (2006). Data Mining using Pruned Artificial Neural Network Tree (ANNT). IEEE 2nd International Conference on Information & Communication Technologies, Damascus, Syria. doi:10.1109/ICTTA.2006.1684577.
Zainuddin, N., Selamat, A., & Ibrahim, R. (2018). Hybrid sentiment classification on twitter aspect-based sentiment analysis. Applied Intelligence, 48(5), 1218–1232. doi:10.1007/s10489-017-1098-6.
Schouten, K., van der Weijde, O., Frasincar, F., & Dekker, R. (2018). Supervised and Unsupervised Aspect Category Detection for Sentiment Analysis with Co-occurrence Data. IEEE Transactions on Cybernetics, 48(4), 1263–1275. doi:10.1109/TCYB.2017.2688801.
Rana, T. A., Cheah, Y.-N., & Rana, T. (2020). Multi-level knowledge-based approach for implicit aspect identification. Applied Intelligence, 50(12), 4616–4630. doi:10.1007/s10489-020-01817-x.
Venugopalan, M., & Gupta, D. (2020). An Unsupervised Hierarchical Rule Based Model for Aspect Term Extraction Augmented with Pruning Strategies. Procedia Computer Science, 171, 22–31. doi:10.1016/j.procs.2020.04.303.
Li, X., Wang, B., Li, L., Gao, Z., Liu, Q., Xu, H., & Fang, L. (2020). Deep2s: Improving Aspect Extraction in Opinion Mining with Deep Semantic Representation. IEEE Access, 8, 104026–104038. doi:10.1109/ACCESS.2020.2999673.
Cilibrasi, R. L., & Vitányi, P. M. B. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370–383. doi:10.1109/TKDE.2007.48.
Dimopoulos, Y., Nebel, B., Koehler, J. (1997). Encoding planning problems in non-monotonic logic programs. Recent Advances in AI Planning. ECP 1997. Lecture Notes in Computer Science, Volume 1348. Springer, Berlin, Germany. doi:10.1007/3-540-63912-8_84.
Langkilde, I., & Knight, K. (1998). Generation that exploits corpus-based statistical knowledge. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 1, 704–710. doi:10.3115/980845.980963.
Tulkens, S., & van Cranenburgh, A. (2020). Embarrassingly simple unsupervised aspect extraction. arXiv Preprint, arXiv:2004.13580. doi:10.48550/arXiv.2004.13580.
Luo, L., Ao, X., Song, Y., Li, J., Yang, X., He, Q., & Yu, D. (2019). Unsupervised Neural Aspect Extraction with Sememes. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 5123-5129. doi:10.24963/ijcai.2019/712.
Venugopalan, M., & Gupta, D. (2022). An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis. Knowledge-Based Systems, 246. doi:10.1016/j.knosys.2022.108668.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv Preprint, arXiv:1301.3781. doi:10.48550/arXiv.1301.3781.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. doi:10.1093/genetics/155.2.945.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. doi:10.1016/j.neunet.2005.06.042.
Akhtar, M. S., Garg, T., & Ekbal, A. (2020). Multi-task learning for aspect term extraction and aspect sentiment classification. Neurocomputing, 398, 247–256. doi:10.1016/j.neucom.2020.02.093.
Ray, P., & Chakrabarti, A. (2022). A Mixed approach of Deep Learning method and Rule-Based method to improve Aspect Level Sentiment Analysis. Applied Computing and Informatics, 18(1–2), 163–178. doi:10.1016/j.aci.2019.02.002.
Cai, H., Tu, Y., Zhou, X., Yu, J., & Xia, R. (2020). Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network. Proceedings of the 28th International Conference on Computational Linguistics, 833-843. doi:10.18653/v1/2020.coling-main.72.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2323. doi:10.1109/5.726791.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Preprint, arXiv:1810.04805. doi:10.48550/arXiv.1810.04805.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. doi:10.1037/h0042519.
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., & Manandhar, S. (2014). SemEval-2014 Task 4: Aspect Based Sentiment Analysis. 8th International Workshop on Semantic Evaluation (SemEval-2014), 27–35. doi:10.3115/v1/S14-2004.
Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26–32. doi:10.1016/j.procs.2013.05.005.
Wang, S., Zhou, W., & Jiang, C. (2020). A survey of word embeddings based on deep learning. Computing, 102(3), 717–740. doi:10.1007/s00607-019-00768-7.
Fix, E., & Hodges, J. L. (1989). Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. International Statistical Review / Revue Internationale de Statistique, 57(3), 238. doi:10.2307/1403797.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and Regression Trees. Routledge, New York, United States. doi:10.1201/9781315139470.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. doi:10.1038/323533a0.
Cho, K., Merrienboer, B.v., Bahdanau, D., & Bengio, Y. (2014). On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv. doi:10.48550/arXiv.1409.1259.
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., Clercq, O. D., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jiménez-Zafra, S. M., & Eryig ̆it, G. (2016). SemEval-2016 Task 5: Aspect Based Sentiment Analysis. 10th International Workshop on Semantic Evaluation (SemEval-2016), 19–30. doi:10.18653/v1/S16-1002.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.
Tensorflow. (2022). Create production-grade machine learning models with TensorFlow. Version v2.15.0. Available online: https://zenodo.org/records/10126399 (accessed on February 2024).
Khan, M. U., Javed, A. R., Ihsan, M., & Tariq, U. (2023). A novel category detection of social media reviews in the restaurant industry. Multimedia Systems, 29(3), 1825–1838. doi:10.1007/s00530-020-00704-2.
Kumar, A., Veerubhotla, A. S., Narapareddy, V. T., Aruru, V., Neti, L. B. M., & Malapati, A. (2021). Aspect term extraction for opinion mining using a Hierarchical Self-Attention Network. Neurocomputing, 465, 195–204. doi:10.1016/j.neucom.2021.08.133.
Wan, H., Yang, Y., Du, J., Liu, Y., Qi, K., & Pan, J. Z. (2020). Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 9122–9129. doi:10.1609/aaai.v34i05.6447.
Anbananthen, K. S. M., Busst, M. B. M. A., Kannan, R., & Kannan, S. (2023). A Comparative Performance Analysis of Hybrid and Classical Machine Learning Method in Predicting Diabetes. Emerging Science Journal, 7(1), 102–115. doi:10.28991/ESJ-2023-07-01-08.
DOI: 10.28991/ESJ-2024-08-01-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mikail Muhammad Azman Busst, Kalaiarasi Sonai Muthu Anbananthen, Subarmaniam Kannan