Developing a Linked Open Data Platform for Folktales in the Greater Mekong Subregion

Treepidok Ngootip, Paiboon Manorom, Wirapong Chansanam, Marut Buranarach


This research paper presents the development of a linked open data (LOD) platform that aims to organize and facilitate access to valuable knowledge about folktales and ethnic groups in the Greater Mekong Subregion countries. The study’s methodology involved the creation of a linked open data platform, structuring folktales’ knowledge, and evaluating its performance through expert assessment. The LOD platform was constructed through Google OpenRefine to establish connections with external data sources, and the RDF files (N-Triples) were deployed on Fuseki Server (Apache Jena) to serve as the SPARQL endpoint for querying the linked open data. The Pubby web app was chosen for further development to provide a user-friendly interface, which customized with the Bootstrap framework, featuring an intuitive homepage and a search box function for simplified data retrieval. For the expert evaluation, the study confirmed that the platform performs a high suitability in terms of congruence, reliability, integrity, understandability, collaboration, accessibility, and connectedness. The developed LOD platform exhibits significant potential for expanding its application to various content domains, offering a valuable resource for accessing and exploring the rich cultural heritage of folktales in the Greater Mekong Subregion countries.


Doi: 10.28991/ESJ-2023-07-06-06

Full Text: PDF


Linked Open Data Platform; Folktales; Greater Mekong Subregion; Knowledge Organization.


Cyganiak, R., & Bizer, C. (2007). Pubby–A linked data frontend for SPARQL endpoints. Available online: (accessed on May 2023).

Coetzee, P., Heath, T., & Motta, E. (2008). SparqPlug: Generating Linked Data from Legacy HTML, SPARQL and the DOM. 22 April, 2008, Beijing, China.

Kumar, V. (2010). Linked Data. A best practice for better knowledge transaction. Knowledge Transactions. Documentation Research and Training Centre, Bengaluru, India.

Reda, R., & Carbonaro, A. (2018). Design and Development of a Linked Open Data-Based Web Portal for Sharing IoT Health and Fitness Datasets. Proceedings of the 4th EAI International Conference on Smart Objects and Technologies for Social Good, 43-48. doi:10.1145/3284869.3284890.

Tilahun, B., Kauppinen, T., Keßler, C., & Fritz, F. (2014). Design and Development of a Linked Open Data-Based Health Information Representation and Visualization System: Potentials and Preliminary Evaluation. JMIR Medical Informatics, 2(2), 3531. doi:10.2196/medinform.3531.

Ali, S., Zada, I., Mehmood, Z., Ullah, A., Ali, H., & Ullah, M. (2022). Publishing and Interlinking COVID-19 Data Using Linked Open Data Principles: Toward Effective Healthcare Planning and Decision-Making. Mathematical Problems in Engineering, 2022. doi:10.1155/2022/4792909.

D’Agostino, M., Samuel, N. O., Sarol, M. J., de Cosio, F. G., Marti, M., Luo, T., Brooks, I., & Espinal, M. (2018). Open data and public health. Revista Panamericana de Salud Pública, 42. doi:10.26633/rpsp.2018.66.

Dhayne, H., Farhat, H., & Kilany, R. (2019). Data Link Discovery Tools for Big Linked Data: A comprehensive study. BDCSIntell, 5-12.

Boilson, A., Weston, D., & Connolly, R. (2018). Evaluation of a European Data Analytic Framework. Proceedings of the 32nd International BCS Human Computer Interaction Conference, 32. doi:10.14236/ewic/hci2018.140.

Wu, P., Ma, F., & Yu, S. (2023). Using a linked data-based knowledge navigation system to improve teaching effectiveness. Interactive Learning Environments, 31(5), 3273–3284. doi:10.1080/10494820.2021.1925925.

Monika Rani, H. G., Sapna, R., & Mishra, S. (2018). An investigative study on the quality aspects of linked open data. Proceedings of the 2018 International Conference on Cloud Computing and Internet of Things. doi:10.1145/3291064.3291074.

Peña, O., Aguilera, U., & López-de-Ipiña, D. (2014). Linked open data visualization revisited: a survey. Semantic Web Journal, IOS Press, 1-16.

Dimitrakis, E., Sgontzos, K., & Tzitzikas, Y. (2020). A survey on question answering systems over linked data and documents. Journal of Intelligent Information Systems, 55(2), 233–259. doi:10.1007/s10844-019-00584-7.

Dimitrakis, E., Sgontzos, K., Mountantonakis, M., & Tzitzikas, Y. (2020). Enabling Efficient Question Answering over Hundreds of Linked Datasets. Information Search, Integration, and Personalization. ISIP 2019. Communications in Computer and Information Science, 1197, Springer, Cham, Switzerland. doi:10.1007/978-3-030-44900-1_1.

Cuijuan, X., Wei, L., & Lei, Z. (2018). Implementation of a Linked Data-Based Genealogy Knowledge Service Platform for Digital Humanities. Data and Information Management, 2(1), 15–26. doi:10.2478/dim-2018-0005.

Hawkins, A. (2022). Archives, linked data and the digital humanities: increasing access to digitised and born-digital archives via the semantic web. Archival Science, 22(3), 319–344. doi:10.1007/s10502-021-09381-0.

Zeng, M. L. (2019). Semantic enrichment for enhancing lam data and supporting digital humanities. Review article. Profesional de La Informacion, 28(1). doi:10.3145/epi.2019.ene.03.

Hyvönen, E., Heino, E., Leskinen, P., Ikkala, E., Koho, M., Tamper, M., ... & Mäkelä, E. (2016). WarSampo Data Service and Semantic Portal for Publishing Linked Open Data About the Second World War History. The Semantic Web, Latest Advances and New Domains, ESWC 2016, Lecture Notes in Computer Science, 9678, Springer, Cham, Switzerland. doi:10.1007/978-3-319-34129-3_46.

Nurmikko-Fuller, T., Bangert, D., & Abdul-Rahman, A. (2017). All the things you are: Accessing an enriched musicological prosopography through JazzCats. Digital Humanities, 1-4.

Wathanti, S., Chansanam, W., & Tuamsuk, K. (2020). Thai custom information sharing on the internet by linked data techniques. Journal of Critical Reviews, 7(8), 1398–1402. doi:10.31838/jcr.07.08.281.

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., ... & Sheets, D. (2006, November). Tabulator: Exploring and analyzing linked data on the semantic web. Proceedings of the 3rd international semantic web user interaction workshop, 6 November, 2006, Athens, United States.

Regalia, B., Janowicz, K., & Mai, G. (2017). A SPARQL-powered Client-Sided Extensible Semantic Web Browser. Proceedings of the Third International Workshop on Visualization and Interaction for Ontologies and Linked Data Co-Located with the 16th International Semantic Web Conference, CEUR Workshop Proceedings, Vol. 1947, ISWC 2017, October 22, 2017, 34-44, Vienna, Austria.

Kwiecien, K., Chansanam, W., Supnithi, T., Chitiyaphol, J., & Tuamsuk, K. (2021). Metadata Schema for Folktales in the Mekong River Basin. Informatics, 8(4), 82. doi:10.3390/informatics8040082.

Kozaki, K., Kitamura, Y., Ikeda, M., & Mizoguchi, R. (2002). Hozo: An Environment for Building/Using Ontologies Based on a Fundamental Consideration of “Role” and “Relationship”. Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, EKAW 2002, Lecture Notes in Computer Science, 2473. Springer, Berlin, Germany. doi:10.1007/3-540-45810-7_21.

OpenRefine. (2023). A Free, Open Source, Powerful Tool for Working with Messy Data. Google, San Francisco, United States. Available online: (accessed on May 2023).

Apache Jena Fuseki. (2023). The Apache Software Foundation. Forest Hill, New York, United States. Available online: (accessed on November 2023).

Tuamsuk, K., Kaewboonma, N., Chansanam, W., & Leopenwong, S. (2016). Taxonomy of folktales from the greater mekong sub-region. Knowledge Organization, 43(6), 431–439. doi:10.5771/0943-7444-2016-6-431.

Tuamsuk, K., Chansanam, W., & Kaewboonma, N. (2018). Ontology of folktales in the greater mekong subregion. International Journal of Metadata, Semantics and Ontologies, 13(1), 57–67. doi:10.1504/IJMSO.2018.096454.

Chansanam, W., Tuamsuk, K., & Chaikhambung, J. (2020). Linked Open Data Framework for Ethnic Groups in Thailand Learning. International Journal of Emerging Technologies in Learning (IJET), 15(10), 140. doi:10.3991/ijet.v15i10.13337.

Candela, G., Escobar, P., Carrasco, R. C., & Marco-Such, M. (2022). Evaluating the quality of linked open data in digital libraries. Journal of Information Science, 48(1), 21–43. doi:10.1177/0165551520930951.

Likert, R. (2017). The Method of Constructing an Attitude Scale. Scaling, 233–242, Routledge, Milton Park, United Kingdom. doi:10.4324/9781315128948-23.

Saengrith, W., Viriyavejakul, C., & Pimdee, P. (2022). Problem-Based Blended Training via Chatbot to Enhance the Problem-Solving Skill in the Workplace. Emerging Science Journal, 6, 1-12. doi:10.28991/ESJ-2022-SIED-01.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. Stanford University, California, United States.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-06-06


  • There are currently no refbacks.

Copyright (c) 2023 Treepidok Ngootip, Wirapong Chansanam