Coronavirus Disease Incidence Resonance with Coastline Dynamics: An Evaluation on Global Resurgence of the Pandemic
Abstract
Doi: 10.28991/ESJ-2023-07-05-024
Full Text: PDF
Keywords
References
WHO. (2023). WHO coronavirus dashboard. World Health Organization (WHO), Geneva, Switzerland. Available online: https://covid19.who.int/ (accessed on May 2023).
Bollinger, R., & Ray, S. (2001). COVID variants: what you should know. Health, John Hopkins Medicine. The Johns Hopkins University, Baltimore, United States. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-strain-of-coronavirus-what-you-should-know (accessed on May 2023).
Alam, Md. S., & Sultana, R. (2021). Influences of climatic and non-climatic factors on COVID-19 outbreak: A review of existing literature. Environmental Challenges, 5, 100255. doi:10.1016/j.envc.2021.100255.
Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 724. doi:10.1016/j.scitotenv.2020.138201.
Mecenas, P., Bastos, R. T. da R. M., Vallinoto, A. C. R., & Normando, D. (2020). Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLOS ONE, 15(9), e0238339. doi:10.1371/journal.pone.0238339.
Rendana, M. (2020). Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban Climate, 34, 100680. doi:10.1016/j.uclim.2020.100680.
Bilal, Bashir, M. F., Komal, B., Benghoul, M., Bashir, M. A., & Tan, D. (2021). Nexus between the covid-19 dynamics and environmental pollution indicators in South America. Risk Management and Healthcare Policy, 14, 67–74. doi:10.2147/RMHP.S290153.
Contini, D., & Costabile, F. (2020). Does air pollution influence COVID-19 outbreaks? Atmosphere, 11(4), 377. doi:10.3390/ATMOS11040377.
Ehsanifar, M. (2021). Airborne aerosols particles and COVID-19 transition. Environmental Research, 200. doi:10.1016/j.envres.2021.111752.
Zhao, Y., Richardson, B., Takle, E., Chai, L., Schmitt, D., & Xin, H. (2019). Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Scientific Reports, 9(1), 11755. doi:10.1038/s41598-019-47788-z.
Nath, D., Sasikumar, K., Nath, R., & Chen, W. (2021). Factors Affecting COVID-19 Outbreaks across the Globe: Role of Extreme Climate Change. Sustainability, 13(6), 3029. doi:10.3390/su13063029.
World Health Organization WHO). (2020). Coronavirus disease (COVID-19): Climate change. World Health Organization (WHO), Geneva, Switzerland. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-climate-change (accessed on September 2023).
Amnuaylojaroen, T., & Parasin, N. (2021). The Association between COVID-19, Air Pollution, and Climate Change. Frontiers in Public Health, 9, 62499. doi:10.3389/fpubh.2021.662499.
Kumar, P.B., Cronin, M. F., Joseph, S., Ravichandran, M., & Sureshkumar, N. (2017). Latent heat flux sensitivity to sea surface temperature: Regional perspectives. Journal of Climate, 30(1), 129–143. doi:10.1175/JCLI-D-16-0285.1.
Large, W. G., & Pond, S. (1982). Sensible and Latent Heat Flux Measurements over the Ocean. Journal of Physical Oceanography, 12(5), 464–482. doi:10.1175/1520-0485(1982)012<0464:salhfm>2.0.co;2.
Wu, R., Kirtman, B. P., & Pegion, K. (2007). Surface latent heat flux and its relationship with sea surface temperature in the National Centers for Environmental Prediction Climate Forecast System simulations and retrospective forecasts. Geophysical Research Letters, 34(17). doi:10.1029/2007GL030751.
Meng, X., Liu, H., Du, Q., Liu, Y., & Xu, L. (2020). Factors controlling the latent and sensible heat fluxes over Erhai Lake under different atmospheric surface layer stability conditions. Atmospheric and Oceanic Science Letters, 13(5), 400–406. doi:10.1080/16742834.2020.1769450.
Zhao, L., Qi, Y., Luzzatto-Fegiz, P., Cui, Y., & Zhu, Y. (2020). COVID-19: Effects of Environmental Conditions on the Propagation of Respiratory Droplets. Nano Letters, 20(10), 7744–7750. doi:10.1021/acs.nanolett.0c03331.
Huang, R. X. (2013). Ocean, Energy Flows in. Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam, Netherlands, doi:10.1016/b978-0-12-409548-9.01198-2.
Zhang, G. J., & Mcphaden, M. J. (1995). The Relationship between Sea Surface Temperature and Latent Heat Flux in the Equatorial Pacific. Journal of Climate, 8(3), 589–605. doi:10.1175/1520-0442(1995)008<0589:trbsst>2.0.co;2.
Ovadnevaite, J., Manders, A., De Leeuw, G., Ceburnis, D., Monahan, C., Partanen, A. I., Korhonen, H., & O’Dowd, C. D. (2014). A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 14(4), 1837–1852. doi:10.5194/acp-14-1837-2014.
Dowd, C. D. O. (2001). Biogenic coastal aerosol production and its influence on aerosol radiative properties. Journal of Geophysical Research: Atmospheres, 106(2), 1545–1549. doi:10.1029/2000jd900423.
Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 64(2), 100–114. doi:10.1016/j.jhin.2006.05.022.
Wong, T. W., Lee, C. K., Tam, W., Lau, J. T. F., Yu, T. S., Lui, S. F., Chan, P. K. S., Li, Y., Bresee, J. S., Sung, J. J. Y., & Parashar, U. D. (2004). Cluster of SARS among Medical Students Exposed to Single Patient, Hong Kong. Emerging Infectious Diseases, 10(2), 269–276. doi:10.3201/eid1002.030452.
Yu, I. T. S., Wong, T. W., Chiu, Y. L., Lee, N., & Li, Y. (2005). Temporal-Spatial Analysis of Severe Acute Respiratory Syndrome among: Hospital Inpatients. Clinical Infectious Diseases, 40(9), 1237–1243. doi:10.1086/428735.
Li, Y., Huang, X., Yu, I. T. S., Wong, T. W., & Qian, H. (2005). Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air, 15(2), 83–95. doi:10.1111/j.1600-0668.2004.00317.x.
Booth, T. F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y., Spence, M., Paton, S., Henry, B., Mederski, B., White, D., Low, D. E., McGeer, A., Simor, A., Vearncombe, M., Downey, J., Jamieson, F. B., Tang, P., & Plummer, F. (2005). Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. Journal of Infectious Diseases, 191(9), 1472–1477. doi:10.1086/429634.
Xiao, W. J., Wang, M. L., Wei, W., Wang, J., Zhao, J. J., Yi, B., & Li, J. S. (2004). Detection of SARS-CoV and RNA on aerosol samples from SARS-patients admitted to hospital. Zhonghua Liu Xing Bing Xue Za Zhi, 25(10), 882-885.
Gholipour, S., Mohammadi, F., Nikaeen, M., Shamsizadeh, Z., Khazeni, A., Sahbaei, Z., Mousavi, S. M., Ghobadian, M., & Mirhendi, H. (2021). COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere, 273, 129701. doi:10.1016/j.chemosphere.2021.129701.
Reinmuth-Selzle, K., Kampf, C. J., Lucas, K., Lang-Yona, N., Fröhlich-Nowoisky, J., Shiraiwa, M., Lakey, P. S. J., Lai, S., Liu, F., Kunert, A. T., Ziegler, K., Shen, F., Sgarbanti, R., Weber, B., Bellinghausen, I., Saloga, J., Weller, M. G., Duschl, A., Schuppan, D., & Pöschl, U. (2017). Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environmental Science and Technology, 51(8), 4119–4141. doi:10.1021/acs.est.6b04908.
Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C. P., Hamilton, K. A., Haramoto, E., & Rose, J. B. (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of the Total Environment, 739, 139076. doi:10.1016/j.scitotenv.2020.139076.
Fitzgerald, J. W. (1991). Marine aerosols: A review. Atmospheric Environment. Part A. General Topics, 25(3–4), 533–545. doi:10.1016/0960-1686(91)90050-h.
Piazzola, J., Bruch, W., Desnues, C., Parent, P., Yohia, C., & Canepa, E. (2021). Influence of meteorological conditions and aerosol properties on the covid-19 contamination of the population in coastal and continental areas in France: study of offshore and onshore winds. Atmosphere, 12(4), 523. doi:10.3390/atmos12040523.
Hatef, E., Kitchen, C., Chang, H. Y., Kharrazi, H., Tang, W., & Weiner, J. P. (2021). Early relaxation of community mitigation policies and risk of COVID-19 resurgence in the United States. Preventive Medicine, 145, 106435. doi:10.1016/j.ypmed.2021.106435.
Khan, S., Zayed, N. M., Darwish, S., Nitsenko, V., Islam, K. M. A., Hassan, Md. A., & Dubrova, O. (2022). Pre and Present COVID-19 Situation: A Framework of Educational Transformation in South Asia Region. Emerging Science Journal, 7, 81–94. doi:10.28991/esj-2023-sper-06.
Wang, C. C., Prather, K. A., Sznitman, J., Jimenez, J. L., Lakdawala, S. S., Tufekci, Z., & Marr, L. C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), 1-13. doi:10.1126/science.abd9149.
Greenhalgh, T., Jimenez, J. L., Prather, K. A., Tufekci, Z., Fisman, D., & Schooley, R. (2021). Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The Lancet, 397(10285), 1603–1605. doi:10.1016/S0140-6736(21)00869-2.
Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., Kurnitski, J., Marr, L. C., Morawska, L., & Noakes, C. (2021). Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 31(2), 314–323. doi:10.1111/ina.12751.
Cao, Y., Shao, L., Jones, T., Oliveira, M. L. S., Ge, S., Feng, X., Silva, L. F. O., & BéruBé, K. (2021). Multiple relationships between aerosol and COVID-19: A framework for global studies. Gondwana Research, 93, 243–251. doi:10.1016/j.gr.2021.02.002.
Guo, C., Bo, Y., Lin, C., Li, H. B., Zeng, Y., Zhang, Y., Hossain, M. S., Chan, J. W. M., Yeung, D. W., Kwok, K., Wong, S. Y. S., Lau, A. K. H., & Lao, X. Q. (2021). Meteorological factors and COVID-19 incidence in 190 countries: An observational study. Science of the Total Environment, 757, 143783. doi:10.1016/j.scitotenv.2020.143783.
Notari, A. (2021). Temperature dependence of COVID-19 transmission. Science of the Total Environment, 763, 144390. doi:10.1016/j.scitotenv.2020.144390.
Chu, B., Chen, R., Liu, Q., & Wang, H. (2023). Effects of High Temperature on COVID-19 Deaths in U.S. Counties. GeoHealth, 7(3), 2022 000705. doi:10.1029/2022GH000705.
Bergero, P., Schaposnik, L. P., & Wang, G. (2023). Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s. Scientific Reports, 13(1), 1525. doi:10.1038/s41598-023-27983-9.
Magd, H., Asmi, K., & Henry, K. (2020). COVID-19 Influencing Factors on Transmission and Incidence Rates-Validation Analysis. Journal of Biomedical Research & Environmental Sciences, 1(7), 277–291. doi:10.37871/jbres1155.
Dbouk, T., & Drikakis, D. (2020). Weather impact on airborne coronavirus survival. Physics of Fluids, 32(9), 093312. doi:10.1063/5.0024272.
Hussein, M. M. A. (2022). Relationship between Latent Heat Flux and Sea Surface Temperature in Alexandria Eastern Harbor, Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 22(6), 1-12. doi:10.4194/TRJFAS20642.
Worldometer website. (2023). Worldometer: Real-Time World Statistics. Coronavirus Updates. Available online: https://www.worldometers.info/ (accessed on May 2023).
World Population Review. (2023). Continent and regional population. World Population Review, Lancaster, United States. Available online: https://worldpopulationreview.com/continents (accessed on May 2023).
World Atlas. (2023). Continents of the world. WorldAtlas, Saint-Laurent. Available online: https://www.worldatlas.com/ (accessed on May 2023).
LatLong (2022). Latitude and Longitude. 2012-2022, Latitude and longitude finder. Available online: www.LatLong.net (accessed on May 2023).
Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M., McAllister, D. (2001). Pilot Analysis of Global Ecosystems: Coastal Ecosystems; World Recourses Institute, Washington, United States.
LePan, N., Routley, N., & Schell, S. (2020). Visualizing the history of pandemic. Visual Capitalist. Available online: https://www.visualcapitalist.com/history-of-pandemics-deadliest/ (accessed on May 2023).
Nandin de Carvalho, H. (2022). Latitude impact on pandemic Sars-Cov-2 2020 outbreaks and possible utility of UV indexes in predictions of regional daily infections and deaths. Journal of Photochemistry and Photobiology, 10, 100108. doi:10.1016/j.jpap.2022.100108.
Burra, P., Soto-Díaz, K., Chalen, I., Gonzalez-Ricon, R. J., Istanto, D., & Caetano-Anollés, G. (2021). Temperature and Latitude Correlate with SARS-CoV-2 Epidemiological Variables but not with Genomic Change Worldwide. Evolutionary Bioinformatics, 17. doi:10.1177/1176934321989695.
Bashir, M. F., Ma, B., & Shahzad, L. (2020). A brief review of socio-economic and environmental impact of Covid-19. Air Quality, Atmosphere & Health, 13(12), 1403–1409. doi:10.1007/s11869-020-00894-8.
Ahmad, S., Shoaib, A., Ali, M. S., Alam, M. S., Alam, N., Ali, M., Mujtaba, M. A., Ahmad, A., Ansari, M. S., & Ali, M. D. (2021). Epidemiology, risk, myths, pharmacotherapeutic management and socio-economic burden due to novel covid-19: A recent update. Research Journal of Pharmacy and Technology, 14(4), 2308–2315. doi:10.52711/0974-360X.2021.00408.
Singh, R. P., & Chauhan, A. (2020). Impact of lockdown on air quality in India during COVID-19 pandemic. Air Quality, Atmosphere & Health, 13(8), 921–928. doi:10.1007/s11869-020-00863-1.
Seale, H., Dyer, C. E. F., Abdi, I., Rahman, K. M., Sun, Y., Qureshi, M. O., Dowell-Day, A., Sward, J., & Islam, M. S. (2020). Improving the impact of non-pharmaceutical interventions during COVID-19: examining the factors that influence engagement and the impact on individuals. BMC Infectious Diseases, 20(1), 607. doi:10.1186/s12879-020-05340-9.
Hawkins, R. B., Charles, E. J., & Mehaffey, J. H. (2020). Socio-economic status and COVID-19–related cases and fatalities. Public Health, 189, 129–134. doi:10.1016/j.puhe.2020.09.016.
Chen, S., Prettner, K., Kuhn, M., Geldsetzer, P., Wang, C., Bärnighausen, T., & Bloom, D. E. (2021). Climate and the spread of COVID-19. Scientific Reports, 11(1), 9042. doi:10.1038/s41598-021-87692-z.
Buonanno, M., Welch, D., Shuryak, I., & Brenner, D. J. (2020). Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Scientific Reports, 10(1), 1–8. doi:10.1038/s41598-020-67211-2.
Menebo, M. M. (2020). Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway. Science of the Total Environment, 737, 139659. doi:10.1016/j.scitotenv.2020.139659.
Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H. L., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. doi:10.1016/S2666-5247(20)30003-3.
Sonja, M. (2017). The impact of aerosols on the sensible and latent heat fluxes in Beijing. Master Thesis, University of Helsinki, Helsinki, Finland.
DOI: 10.28991/ESJ-2023-07-05-024
Refbacks
- There are currently no refbacks.