Design and Analysis of a Bandwidth Aware Adaptive Multipath N-Channel Routing Protocol for 5G Internet of Things (IoT)

Satyanand Singh, Joanna Rosak-Szyrocka, Balàzs Lukàcs

Abstract


Large numbers of mobile wireless nodes that can move randomly and join or leave the network at any moment make up mobile ad-hoc networks. A significant number of messages are delivered during information exchange in populated regions because of the Internet of Things' (IoT) exponential increase in connected devices. Congestion can increase transmission latency and packet loss by causing congestion. More network size, increased network traffic, and high mobility that necessitate dynamic topology make this problem worse. An adaptive Multipath Multichannel Energy Efficient (AMMEE) routing strategy is proposed in this study, in which route selection strategies depend on forecasted energy consumption per packet, available bandwidth, queue length, and channel utilization. While multichannel uses a channel-ideal assignment process to lessen network collisions, multipath offers various paths and balances network strain. The link bandwidth is split up into a few sub-channels in the multichannel mechanism. To reduce network collisions, several source nodes simultaneously access the channel bandwidth. The cooperative multipath multichannel technique offers several paths from a single source or from several sources to the destination without colliding or becoming congested. The AMMEE routing approach is the basis for path selection. A load- and bandwidth-aware routing mechanism in the proposed AMMEE chooses the path based on node energy and forecasts their lifetime, which improves network dependability. The outcome demonstrates a comparative analysis of various multichannel medium access control (MMAC) techniques, including Parallel Rendezvous Multi Channel Medium Access Protocol (PRMMAC), Quality of Service Ad hoc On Demand Multipath Distance Vector (QoS-AOMDV), Q-learning-based Multipath Routing (QMR), and Topological Change Adaptive Ad hoc On-demand Multipath Distance Vector (TA-AOMDV) and the proposed AMMEE method. The results show that the AMMEE approach outperforms alternative systems.

 

Doi: 10.28991/ESJ-2024-08-01-018

Full Text: PDF


Keywords


MANET; Multichannel; AMMEE; Congestion; Energy; Delay; Dropping.

References


Walikar, G. A., & Biradar, R. C. (2017). A survey on hybrid routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications, 77, 48–63. doi:10.1016/j.jnca.2016.10.014.

Ud Din, I., Guizani, M., Hassan, S., Kim, B. S., K. Khan, M., Atiquzzaman, M., & Ahmed, S. H. (2019). The Internet of Things: A Review of Enabled Technologies and Future Challenges. IEEE Access, 7, 7606–7640. doi:10.1109/ACCESS.2018.2886601.

Yadav, A. K., & Tripathi, S. (2017). QMRPRNS: Design of QoS multicast routing protocol using reliable node selection scheme for MANETs. Peer-to-Peer Networking and Applications, 10(4), 897–909. doi:10.1007/s12083-016-0441-8.

Das, S. K., & Tripathi, S. (2015). Energy Efficient Routing Protocol for MANET Based on Vague Set Measurement Technique. Procedia Computer Science, 58, 348–355. doi:10.1016/j.procs.2015.08.030.

Kanellopoulos, D. (2019). Congestion control for MANETs: An overview. ICT Express, 5(2), 77–83. doi:10.1016/j.icte.2018.06.001.

Saraswathi, R., Srinivasan, J., & Aruna, S. (2022). An Energy Efficient Routing Protocol and Cross Layer Based Congestion Detection Using Hybrid Genetic Fuzzy Neural Network (HGFNN) Model for MANET. Journal of Algebraic Statistics, 13(2), 1007–1019.

Ghaffari, A. (2017). Real-time routing algorithm for mobile ad hoc networks using reinforcement learning and heuristic algorithms. Wireless Networks, 23(3), 703–714. doi:10.1007/s11276-015-1180-0.

Sarfaraz Ahmed, A., Senthil Kumaran, T., Syed Abdul Syed, S., & Subburam, S. (2015). Cross-layer design approach for power control in mobile ad hoc networks. Egyptian Informatics Journal, 16(1). doi:10.1016/j.eij.2014.11.001.

Bouras, M. A., Ullah, A., & Ning, H. (2019). Synergy between Communication, Computing, and Caching for Smart Sensing in Internet of Things. Procedia Computer Science, 147, 504–511. doi:10.1016/j.procs.2019.01.244.

Umapathi, N., Ramaraj, N., Balasubramaniam, D., & Adlin mano, R. (2015). A Hybrid Ant Routing Algorithm for Reliable Throughput Using MANET. Advances in Intelligent Systems and Computing, 127–136. doi:10.1007/978-81-322-2268-2_14.

Khan, M. S., Waris, S., Ali, I., Khan, M. I., & Anisi, M. H. (2018). Mitigation of Packet Loss Using Data Rate Adaptation Scheme in MANETs. Mobile Networks and Applications, 23(5), 1141–1150. doi:10.1007/s11036-016-0780-y.

Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274. doi:10.1007/s10796-014-9489-2.

Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 18(3), 1617–1655. doi:10.1109/COMST.2016.2532458.

Singh, S. (2021). Environmental Energy Harvesting Techniques to Power Standalone IoT-Equipped Sensor and Its Application in 5G Communication. Emerging Science Journal, 4, 116–126. doi:10.28991/esj-2021-sp1-08.

Singh, S. (2021). Minimal Redundancy Linear Array and Uniform Linear Arrays Beamforming Applications in 5G Smart Devices. Emerging Science Journal, 4, 70–84. doi:10.28991/esj-2021-sp1-05.

Du, X., Xiao, Y., Ci, S., Guizani, M., & Chen, H.-H. (2007). A Routing-Driven Key Management Scheme for Heterogeneous Sensor Networks. 2007 IEEE International Conference on Communications, Glasgow, United States. doi:10.1109/icc.2007.564.

Yıldız, A., Džakmić, Š., & Saleh, M. A. (2019). A short survey on next generation 5G wireless networks. Sustainable Engineering and Innovation, 1(1), 57-66. doi:10.37868/sei.v1i1.93.

Hancke, G. P., & Hancke Jr, G. P. (2013). The role of advanced sensing in smart cities. Sensors, 13(1), 393-425. doi:10.3390/s130100393.

Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134. doi:10.1016/j.jnca.2014.01.014.

Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys and Tutorials, 20(4), 2923–2960. doi:10.1109/COMST.2018.2844341.

Bani-Bakr, A., Dimyati, K., Hindia, M. H. D. N., Wong, W. R., Al-Omari, A., Sambo, Y. A., & Imran, M. A. (2020). Optimizing the number of fog nodes for finite fog radio access networks under multi-slope path loss model. Electronics (Switzerland), 9(12), 1–23. doi:10.3390/electronics9122175.

Bani-Bakr, A., Hindia, M. N., Dimyati, K., Zawawi, Z. B., & Tengku Mohmed Noor Izam, T. F. (2022). Caching and Multicasting for Fog Radio Access Networks. IEEE Access, 10, 1823–1838. doi:10.1109/ACCESS.2021.3137148.

Tilwari, V., Hindia, M. H. D. N., Dimyati, K., Jayakody, D. N. K., Solanki, S., Sinha, R. S., & Hanafi, E. (2021). MBMQA: A multicriteria-aware routing approach for the IoT 5G network based on D2D communication. Electronics (Switzerland), 10(23), 2937. doi:10.3390/electronics10232937.

Biswas, K., Muthukkumarasamy, V., Chowdhury, M. J. M., Wu, X. W., & Singh, K. (2023). A multipath routing protocol for secure energy efficient communication in Wireless Sensor Networks. Computer Networks, 232. doi:10.1016/j.comnet.2023.109842.

Shanmugam, K., Subburathinam, K., & Velayuthampalayam Palanisamy, A. (2016). A Dynamic Probabilistic Based Broadcasting Scheme for MANETs. Scientific World Journal, 1832026. doi:10.1155/2016/1832026.

Singh, S., Assaf Mansour, H., Kumar, A., & Agrawal, N. (2017). Speaker Recognition System for Limited Speech Data Using High-Level Speaker Specific Features and Support Vector Machines. International Journal of Applied Engineering Research, 12(19), 8026-8033.

Yadav, N. S., & Yadav, R. P. (2008). Performance comparison and analysis of table-driven and on-demand routing protocols for mobile ad-hoc networks. International Journal of Electronics and Communication Engineering, 2(12), 2809-2817.

Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers. Proceedings of the Conference on Communications Architectures, Protocols and Applications - SIGCOMM ’94, 234–244. doi:10.1145/190314.190336.

Clausen, T. H., Polytechnique, É., Jacquet, P., & Adjih, C. (2003). Real Time in AH hoc networks and VANet View project Design and Development of Applications in Vehicular Enviroment View project. Optimized Link State Routing Proto col (OLSR), Network Working Group, France.

Perkins, P., Belding-Royer, E., & Das, S. (2003). Ad hoc On-Demand Distance Vector (AODV) Routing. Network Working Group. Request for Comments, 3561, 1-73.

Eze, E. C., Zhang, S. J., Liu, E. J., & Eze, J. C. (2016). Advances in vehicular ad-hoc networks (VANETs): Challenges and road-map for future development. International Journal of Automation and Computing, 13, 1-18. doi:10.1007/s11633-015-0913-y.

Haas, Z. J., Pearlman, M. R. & Samar, P. (2023). Internet-Draft. Available online: http://www.ietf.org/ietf/1id-abstracts.txt (accessed on February 2023).

Johnson, D. B., & Maltz, D. A. (1996). Dynamic Source Routing in Ad Hoc Wireless Networks. Mobile Computing, 153–181. doi:10.1007/978-0-585-29603-6_5.

Gupta, N., & Gupta, R. (2012). Route-discovery optimization in LAR: a review. In Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011: Volume 2, 877-884. doi:10.1007/978-81-322-0491-6_80.

Zhu, Y., Zhang, J., & Partel, K. (2011). Location-aided routing with uncertainty in mobile ad hoc networks: A stochastic semidefinite programming approach. Mathematical and Computer Modelling, 53(11-12), 2192-2203. doi:10.1016/j.mcm.2010.08.025.

Yadav, N. S., & Yadav, R. P. (2008). Performance Comparison and Analysis of Table- Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks. International Journal of Information Technology, 4(2), 101-109.

Adam, S. M., & Hassan, R. (2013). Delay aware Reactive Routing Protocols for QoS in MANETs: a Review. Journal of Applied Research and Technology, 11(6), 844–850. doi:10.1016/s1665-6423(13)71590-6.

Saba Farheen, N. S., & Jain, A. (2022). Improved routing in MANET with optimized multi path routing fine-tuned with hybrid modeling. Computer and Information Sciences, 34(6), 2443–2450. doi:10.1016/j.jksuci.2020.01.001.

Marina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6(7), 969–988. doi:10.1002/wcm.432.

Mueller, S., Tsang, R.P., & Ghosal, D. (2004). Multipath Routing in Mobile Ad Hoc Networks: Issues and Challenges. Performance Tools and Applications to Networked Systems. MASCOTS 2003, Lecture Notes in Computer Science, 2965. Springer, Berlin, Germany. doi:10.1007/978-3-540-24663-3_10.

Asfour, T., & Serhrouchni, A. (2001). The Coexistence of Multicast and Unicast over a GPS Capable Network. Networking — ICN 2001. ICN 2001. Lecture Notes in Computer Science, 2093. Springer, Berlin, Germany. doi:10.1007/3-540-47728-4_5.

Chen, L., & Heinzelman, W. B. (2005). QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 23(3), 561–572. doi:10.1109/JSAC.2004.842560.

Sharma, S., Jindal, D., & Agarwal, R. (2017). An approach for congestion control in mobile ad hoc networks. International Journal of Emerging Trends in Engineering and Development, 3(7), 217-223.

Soundararajan, S., & Bhuvaneswaran, R. S. (2012). Multipath rate based congestion control for mobile ad hoc networks. International Journal of Computer Applications, 55(1), 42-47.

Pham, Q. V., & Hwang, W. J. (2016). Network utility maximization-based congestion control over wireless networks: A survey and potential directives. IEEE Communications Surveys & Tutorials, 19(2), 1173-1200. doi:10.1109/COMST.2016.2619485.

Le, T. A., Hong, C. S., Razzaque, M. A., Lee, S., & Jung, H. (2012). EcMTCP: An energy-aware congestion control algorithm for multipath TCP. IEEE Communications Letters, 16(2), 275–277. doi:10.1109/LCOMM.2011.120211.111818.

Sheeja, S., & V.Pujeri, R. (2013). Effective Congestion Avoidance Scheme for Mobile Ad Hoc Networks. International Journal of Computer Network and Information Security, 5(1), 33–40. doi:10.5815/ijcnis.2013.01.04.

Xia, L., Liu, Z., Chang, Y., & Sun, P. (2009). An Improved AODV Routing Protocol Based on the Congestion Control and Routing Repair Mechanism. WRI International Conference on Communications and Mobile Computing, Kunming, China. doi:10.1109/cmc.2009.307.

Senthil kumaran, T., & Sankaranarayanan, V. (2011). Early Congestion Detection and Self Cure Routing in Manet. Computer Networks and Information Technologies. CNC 2011, Communications in Computer and Information Science, 142, Springer, Berlin, Germany. doi:10.1007/978-3-642-19542-6_110.

Soni, H., & Mishra, P. K. (2013). Congestion control using predictive approach in mobile ad hoc network. International Journal of Soft Computing and Engineering, 3(4), 76-78.

Senthilkumaran, T., & Sankaranarayanan, V. (2013). Dynamic congestion detection and control routing in ad hoc networks. Journal of King Saud University - Computer and Information Sciences, 25(1), 25–34. doi:10.1016/j.jksuci.2012.05.004.

Simaiya, S., Shrivastava, A., & Keer, N. P. (2014). IRED algorithm for improvement in performance of mobile ad hoc networks. Proceedings - 2014 4th International Conference on Communication Systems and Network Technologies, CSNT 2014, 283–287. doi:10.1109/CSNT.2014.62.

Ferreira, J., & Alam, M. (2017). Future Intelligent Vehicular Technologies. Springer, Cham, Switzerland. doi:10.1007/978-3-319-51207-5.

Lochert, C., Scheuermann, B., & Mauve, M. (2007). A survey on congestion control for mobile ad hoc networks. Wireless Communications and Mobile Computing, 7(5), 655–676. doi:10.1002/wcm.524.

Beg, A., Mostafa, S. M., AbdulGhaffar, A. A., Sheltami, T. R., & Mahmoud, A. (2022). An Adaptive and Spectrally Efficient Multi-Channel Medium Access Control Protocol for Dynamic Ad Hoc Networks. Sensors, 22(22), 8666. doi:10.3390/s22228666.


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-01-018

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Satyanand Singh, Joanna Rosak Szyrocka, Balazs Lukacs