Interval Estimation of the Dependence Parameter in Bivariate Clayton Copulas

Unyamanee Kummaraka, Patchanok Srisuradetchai


In various disciplines, discerning dependencies between variables remains a crucial undertaking. While correlation measures like Pearson, Spearman, and Kendall provide insight into the degree of two-variable relationships, they fall short of revealing the intricate structure of dependencies between these variables. The Clayton copula, known for its flexible attributes, becomes instrumental in unveiling this dependency structure. This paper aims to advance knowledge by providing an explicit formula for creating Wald confidence intervals (CIs) for the dependence parameter in a bivariate Clayton copula, along with a mathematical derivation of the observed Fisher information. In comparison, we also propose likelihood CIs, whose performance we examine in simulation studies using both coverage probability and average length of CIs as performance indicators. Our findings reveal that in scenarios characterized by small sample sizes, likelihood-based CIs, despite their slightly more complex computational requirements, outperform Wald CIs, yielding a coverage probability more proximate to the nominal confidence level of 0.95. However, in situations involving large samples and a dependence parameter distant from zero, both Wald and likelihood-based CIs demonstrate comparable utility. For real-world data applications, the daily closing prices of two cryptocurrencies are analyzed using the proposed CIs.


Doi: 10.28991/ESJ-2023-07-05-02

Full Text: PDF


Bivariate Clayton; Dependence; Wald Interval; Likelihood-based Interval.


Di Clemente, A., & Romano, C. (2021). Calibrating and Simulating Copula Functions in Financial Applications. Frontiers in Applied Mathematics and Statistics, 7. doi:10.3389/fams.2021.642210.

Štulajter, F. (2009). Comparison of different copula assumptions and their application in portfolio construction. Ekonomická Revue - Central European Review of Economic Issues, 12(4), 191–204. doi:10.7327/cerei.2009.12.04.

Naifar, N. (2011). Modelling dependence structure with Archimedean copulas and applications to the iTraxx CDS index. Journal of Computational and Applied Mathematics, 235(8), 2459–2466. doi:10.1016/

Darabi, R., & Baghban, M. (2018). Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis. Advances in Mathematical Finance & Applications, 3(1), 33–51. doi:10.22034/AMFA.2018.539133.

Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., & Mirabbasi, R. (2017). Parameter estimation of copula functions using an optimization-based method. Theoretical and Applied Climatology, 129(1–2), 21–32. doi:10.1007/s00704-016-1757-2.

Evkaya, O., Yozgatligil, C., & Sevtap Selcuk-Kestel, A. (2019). Drought analysis using copula approach: a case study for Turkey. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(3), 243–260. doi:10.1080/23737484.2019.1635923.

Fan, L., Wang, H., Wang, C., Lai, W., & Zhao, Y. (2017). Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China. Advances in Meteorology, 2017, 1–11. doi:10.1155/2017/4650284.

Zhang, Y. (2018). Investigating dependencies among oil price and tanker market variables by copula-based multivariate models. Energy, 161, 435–446. doi:10.1016/

Bhatti, M. I., & Do, H. Q. (2019). Recent development in copula and its applications to the energy, forestry and environmental sciences. International Journal of Hydrogen Energy, 44(36), 19453–19473. doi:10.1016/j.ijhydene.2019.06.015.

Rusyda, H. A., Noviyanti, L., Soleh, A. Z., Chadidjah, A., & Indrayatna, F. (2021). The design of multiple crop insurance in Indonesia based on revenue risk using the copula model approach. Journal of Applied Statistics, 48(13–15), 2920–2930. doi:10.1080/02664763.2021.1897089.

Tjøstheim, D., Otneim, H., & Støve, B. (2022). Statistical Dependence: Beyond Pearson’s ρ. Statistical Science, 37(1), 90–109. doi:10.1214/21-STS823.

Schweizer, B., & Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. The annals of statistics, 9(4), 879-885. doi:10.1214/aos/1176345528.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York, United States. doi:10.1007/0-387-28678-0.

Frees, E. W., & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2(1), 1–25. doi:10.1080/10920277.1998.10595667.

Joe, H. (2014). Dependence Modeling with Copulas. Chapman and Hall/CRC, New York, United States. doi:10.1201/b17116.

Hofert, M., Kojadinovic, I., Mächler, M., & Yan, J. (2018). Elements of Copula Modeling with R. Springer, Cham, Switzerland. doi:10.1007/978-3-319-89635-9.

Atique, F., & Attoh-Okine, N. (2018). Copula parameter estimation using Bayesian inference for pipe data analysis. Canadian Journal of Civil Engineering, 45(1), 61–70. doi:10.1139/cjce-2017-0084.

Genest, C., & Rivest, L.-P. (1993). Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association, 88(423), 1034. doi:10.2307/2290796.

Shemyakin, A., & Kniazev, A. (2017). Introduction to Bayesian Estimation and Copula Models of Dependence. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118959046.

Choroś, B., Ibragimov, R., Permiakova, E. (2010). Copula Estimation. Copula Theory and Its Applications. Lecture Notes in Statistics, vol 198. Springer, Berlin, Germany. doi:10.1007/978-3-642-12465-5_3.

Kim, G., Silvapulle, M. J., & Silvapulle, P. (2007). Comparison of semiparametric and parametric methods for estimating copulas. Computational Statistics & Data Analysis, 51(6), 2836–2850. doi:10.1016/j.csda.2006.10.009.

Genest, C., Ghoudi, K., & Rivest, L. P. (1995). A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions. Biometrika, 82(3), 543. doi:10.2307/2337532.

Ko, V., & Hjort, N. L. (2019). Model robust inference with two-stage maximum likelihood estimation for copulas. Journal of Multivariate Analysis, 171, 362–381. doi:10.1016/j.jmva.2019.01.004.

Kojadinovic, I., & Yan, J. (2010). Comparison of three semiparametric methods for estimating dependence parameters in copula models. Insurance: Mathematics and Economics, 47(1), 52–63. doi:10.1016/j.insmatheco.2010.03.008.

Alipour, M., La Puma, I., Picotte, J., Shamsaei, K., Rowell, E., Watts, A., ... & Taciroglu, E. (2023). A multimodal data fusion and deep learning framework for large-scale wildfire surface fuel mapping. Fire, 6(2), 36. doi:10.3390/fire6020036.

Hofert, M., Mächler, M., & McNeil, A. J. (2012). Likelihood inference for Archimedean copulas in high dimensions under known margins. Journal of Multivariate Analysis, 110, 133–150. doi:10.1016/j.jmva.2012.02.019.

Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141–151. doi:10.2307/2335289.

Mai, J.-F., & Scherer, M. (2014). Financial Engineering with Copulas Explained. Palgrave Macmillan, London, United Kingdom. doi:10.1057/9781137346315.

Rohde, C A. (2014). Introductory Statistical Inference with the Likelihood Function. Springer, Cham, Switzerland. doi:10.1007/978-3-319-10461-4.

Pawitan, Y. (2001). In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, Oxford, United Kingdom.

Sodanin, K., Niwitpong, S. A., & Niwitpong, S. (2022). Estimating Simultaneous Confidence Intervals for Multiple Contrasts of Means of Normal Distribution with Known Coefficients of Variation. Emerging Science Journal, 6(4), 705-716. doi:10.28991/ESJ-2022-06-04-04.

Fisher, R. A. (1956). Statistical methods and scientific inference. Hafner Publishing Company, Pennsylvania, United States.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-05-02


  • There are currently no refbacks.

Copyright (c) 2023 Patchanok Srisuradetchai